Emission prediction and optimization of methanol/diesel dual-fuel engines based on ITransformer-BiGRU and NSGA-III

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mingzhang Pan , Xinxin Cao , Changcheng Fu , Shengyou Liao , Xiaorong Zhou , Wei Guan
{"title":"Emission prediction and optimization of methanol/diesel dual-fuel engines based on ITransformer-BiGRU and NSGA-III","authors":"Mingzhang Pan ,&nbsp;Xinxin Cao ,&nbsp;Changcheng Fu ,&nbsp;Shengyou Liao ,&nbsp;Xiaorong Zhou ,&nbsp;Wei Guan","doi":"10.1016/j.egyai.2024.100466","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce engine pollutant emissions, an emission modeling and optimization scheme based on a hybrid artificial intelligence scheme is proposed in this study to reduce pollutant emissions of methanol/diesel dual-fuel engines under low load. Firstly, a data cleaning method based on isolated forest and correlation analysis is designed to improve the stability of the system. Secondly, a hybrid emission prediction model based on improved Transformer (ITransformer) and Bidirectional Gated Recurrent Unit (BiGRU) is built to obtain an accurate mathematical model between control parameters and emissions. Finally, based on the obtained mathematical model, the 3rd Non-dominated Sorting Genetic Algorithm (NGSA-III) is used to adjust and optimize the control parameters. Using engine bench test data to evaluate the proposed hybrid emission prediction model, the R<sup>2</sup> of CO, HC, and NO<sub>x</sub> prediction is 0.9969, 0.9973, and 0.9982, respectively, which is higher than the accuracy of the seven existing modeling methods. Compared with the unoptimized MESR46, the CO, HC, and NO<sub>x</sub> emissions of the optimized scheme are reduced by at least 45.17 %, 15.30 %, and 17.32 % respectively, which can significantly reduce the CO, HC, and NO<sub>x</sub> emissions, and comparison and analysis with the most advanced optimization technologies show a competitive optimization effect.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"19 ","pages":"Article 100466"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To reduce engine pollutant emissions, an emission modeling and optimization scheme based on a hybrid artificial intelligence scheme is proposed in this study to reduce pollutant emissions of methanol/diesel dual-fuel engines under low load. Firstly, a data cleaning method based on isolated forest and correlation analysis is designed to improve the stability of the system. Secondly, a hybrid emission prediction model based on improved Transformer (ITransformer) and Bidirectional Gated Recurrent Unit (BiGRU) is built to obtain an accurate mathematical model between control parameters and emissions. Finally, based on the obtained mathematical model, the 3rd Non-dominated Sorting Genetic Algorithm (NGSA-III) is used to adjust and optimize the control parameters. Using engine bench test data to evaluate the proposed hybrid emission prediction model, the R2 of CO, HC, and NOx prediction is 0.9969, 0.9973, and 0.9982, respectively, which is higher than the accuracy of the seven existing modeling methods. Compared with the unoptimized MESR46, the CO, HC, and NOx emissions of the optimized scheme are reduced by at least 45.17 %, 15.30 %, and 17.32 % respectively, which can significantly reduce the CO, HC, and NOx emissions, and comparison and analysis with the most advanced optimization technologies show a competitive optimization effect.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信