Topologically consistent regression modeling exemplified for laminar burning velocity of ammonia-hydrogen flames

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hui Du , Tianyu Wang , Haogang Wei , Guy Y. Cornejo Maceda , Bernd R. Noack , Lei Zhou
{"title":"Topologically consistent regression modeling exemplified for laminar burning velocity of ammonia-hydrogen flames","authors":"Hui Du ,&nbsp;Tianyu Wang ,&nbsp;Haogang Wei ,&nbsp;Guy Y. Cornejo Maceda ,&nbsp;Bernd R. Noack ,&nbsp;Lei Zhou","doi":"10.1016/j.egyai.2024.100456","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven regression models are generally calibrated by minimizing a representation error. However, optimizing the model accuracy may create nonphysical wiggles. In this study, we propose topological consistency as a new metric to mitigate these wiggles. The key enabler is Persistent Data Topology (PDT) which extracts a topological skeleton from discrete scalar field data. PDT identifies the extrema of the model based on a neighborhood analysis. The topological error is defined as the mismatch of extrema between the data and the model. The methodology is exemplified for the modeling of the Laminar Burning Velocity (<span><math><mrow><mi>L</mi><mi>B</mi><mi>V</mi></mrow></math></span>) of ammonia-hydrogen flames. Four regression models, Multi-layer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Light Gradient Boosting Machine (Light GBM), are trained using the data generated by a modified GRI3.0 mechanism. In comparison, MLP builds a model that achieves the highest accuracy and preserves the topological structure of the data. We expect that the proposed topologically consistent regression modeling will enjoy many more applications in model calibration, model selection and optimization algorithms.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"19 ","pages":"Article 100456"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven regression models are generally calibrated by minimizing a representation error. However, optimizing the model accuracy may create nonphysical wiggles. In this study, we propose topological consistency as a new metric to mitigate these wiggles. The key enabler is Persistent Data Topology (PDT) which extracts a topological skeleton from discrete scalar field data. PDT identifies the extrema of the model based on a neighborhood analysis. The topological error is defined as the mismatch of extrema between the data and the model. The methodology is exemplified for the modeling of the Laminar Burning Velocity (LBV) of ammonia-hydrogen flames. Four regression models, Multi-layer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Light Gradient Boosting Machine (Light GBM), are trained using the data generated by a modified GRI3.0 mechanism. In comparison, MLP builds a model that achieves the highest accuracy and preserves the topological structure of the data. We expect that the proposed topologically consistent regression modeling will enjoy many more applications in model calibration, model selection and optimization algorithms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信