Identification of cell chemistries in lithium-ion batteries: Improving the assessment for recycling and second-life

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Christopher Wett , Jörg Lampe , Dominik Görick , Thomas Seeger , Bugra Turan
{"title":"Identification of cell chemistries in lithium-ion batteries: Improving the assessment for recycling and second-life","authors":"Christopher Wett ,&nbsp;Jörg Lampe ,&nbsp;Dominik Görick ,&nbsp;Thomas Seeger ,&nbsp;Bugra Turan","doi":"10.1016/j.egyai.2024.100468","DOIUrl":null,"url":null,"abstract":"<div><div>Recycling and second life of lithium-ion batteries are vital for lowering the growing resource demand of sectors like mobility or home energy storage. However, an often-overlooked issue is the sometimes-unknown cell chemistry of batteries entering the end-of-life. In this work, a machine learning based approach for the identification of lithium-ion battery cathode chemistries is presented. First, an initial measurement boundary determination is introduced. Using the Python Battery Mathematical Modelling (PyBaMM) framework, synthetical partial open circuit voltage (OCV) charge and discharge curves are generated with an electrochemical single particle model for three different cathode chemistries and the initial state of charge and state of health values as well as the initial capacities are varied. The dV/dQ characteristics are chosen as features and four machine learning algorithms are trained on different lengths of OCV curves. The trade-off between achievable accuracy and the number of OCV steps showed that an increasing accuracy correlates with a higher step number. While extremely small charge and discharge capacities per step did not yield sufficient testing accuracies, capacities starting from 0.2 Ah per step up to 0.6 Ah per step showed increasingly good results with an accuracy of up to 89.3 % for 0.5 Ah and 15 OCV steps. Additionally, the approach was validated by classifying experimental data. The results especially demonstrate the effectiveness of the approach to distinguish between lithium iron phosphate (LFP) and lithium nickel manganese cobalt (NMC) cells.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"19 ","pages":"Article 100468"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recycling and second life of lithium-ion batteries are vital for lowering the growing resource demand of sectors like mobility or home energy storage. However, an often-overlooked issue is the sometimes-unknown cell chemistry of batteries entering the end-of-life. In this work, a machine learning based approach for the identification of lithium-ion battery cathode chemistries is presented. First, an initial measurement boundary determination is introduced. Using the Python Battery Mathematical Modelling (PyBaMM) framework, synthetical partial open circuit voltage (OCV) charge and discharge curves are generated with an electrochemical single particle model for three different cathode chemistries and the initial state of charge and state of health values as well as the initial capacities are varied. The dV/dQ characteristics are chosen as features and four machine learning algorithms are trained on different lengths of OCV curves. The trade-off between achievable accuracy and the number of OCV steps showed that an increasing accuracy correlates with a higher step number. While extremely small charge and discharge capacities per step did not yield sufficient testing accuracies, capacities starting from 0.2 Ah per step up to 0.6 Ah per step showed increasingly good results with an accuracy of up to 89.3 % for 0.5 Ah and 15 OCV steps. Additionally, the approach was validated by classifying experimental data. The results especially demonstrate the effectiveness of the approach to distinguish between lithium iron phosphate (LFP) and lithium nickel manganese cobalt (NMC) cells.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信