Studying the influence of temperature on the thermodynamic, structural, and dynamic properties of 11 recently reparametrized rigid water models via molecular dynamics simulations
Adnan Jaradat, Khadeejeh Abudalbouh, Ali Al-Mahmoud, Rakan Alsalman, Abdalla Obeidat
{"title":"Studying the influence of temperature on the thermodynamic, structural, and dynamic properties of 11 recently reparametrized rigid water models via molecular dynamics simulations","authors":"Adnan Jaradat, Khadeejeh Abudalbouh, Ali Al-Mahmoud, Rakan Alsalman, Abdalla Obeidat","doi":"10.1016/j.fluid.2024.114329","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular dynamics simulations were conducted to investigate 11 recently reparametrized 3-site, 4-site, and 5-site rigid water models, including TIP4P/ε, OPC, TIP3P-FB, TIP4P-FB, TIP4P-D, SPC/ε, OPC3, TIP5P-2018, TIP3P-ST, TIP4P-ST, and FBA/ε. The study focused on the effects of temperature on the thermodynamic, structural, and dynamic properties of water. A wide range of physical properties was examined using both slab and closed systems across temperatures ranging from 270 to 630 Kelvin. The results were compared with older rigid and non-rigid water models. Among the models tested, TIP4P-FB demonstrated the best overall performance, while OPC3 was identified as the most accurate among the 3-site models tested in this study.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"592 ","pages":"Article 114329"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224003042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular dynamics simulations were conducted to investigate 11 recently reparametrized 3-site, 4-site, and 5-site rigid water models, including TIP4P/ε, OPC, TIP3P-FB, TIP4P-FB, TIP4P-D, SPC/ε, OPC3, TIP5P-2018, TIP3P-ST, TIP4P-ST, and FBA/ε. The study focused on the effects of temperature on the thermodynamic, structural, and dynamic properties of water. A wide range of physical properties was examined using both slab and closed systems across temperatures ranging from 270 to 630 Kelvin. The results were compared with older rigid and non-rigid water models. Among the models tested, TIP4P-FB demonstrated the best overall performance, while OPC3 was identified as the most accurate among the 3-site models tested in this study.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.