Research on multi-objective control of PPCI diesel engine combustion process based on data driven modelling

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ziqiang Chen , Peng Ju , Zhe Wang , Du Huang , Lei Shi , Kangyao Deng
{"title":"Research on multi-objective control of PPCI diesel engine combustion process based on data driven modelling","authors":"Ziqiang Chen ,&nbsp;Peng Ju ,&nbsp;Zhe Wang ,&nbsp;Du Huang ,&nbsp;Lei Shi ,&nbsp;Kangyao Deng","doi":"10.1016/j.egyai.2025.100472","DOIUrl":null,"url":null,"abstract":"<div><div>Control of combustion stability in partial pre-mixed compression ignition (PPCI) engine is one of the main issues facing its application. However, the multi-parameter coupling and nonlinear increase in the combustion process make the model and controller design more difficult. Therefore, this study proposed a diesel engine control method that combines neural networks and model-free adaptive control in the absence of model and controller structure, which can achieve real-time coordination control of crank angle at 50 % of total heat release (CA50) and indicated mean effective pressure (IMEP) in the PPCI combustion process. Through comparisons under different operating conditions, it was found that the adjustment of algorithm parameters needs to adapt to the sensitivity changes of control parameters. In addition, the study validated the real-time performance and control effect of the algorithm, the experimental results indicate that the execution time of the control algorithm is approximately 5.59 milliseconds, which satisfies the real-time control requirements for the combustion process. By adjusting the weight coefficient matrix of the control authority, CA50 and IMEP are effectively tracked within the constraints of maximum pressure rise rate. The control error for CA50 remains within ±2.7 %, while that for IMEP is confined to ±1 %. Furthermore, the root mean square error for CA50 is measured at 1.1 crank angle, and for IMEP it stands at 23.5 kPa, thereby achieving precise real-time control of the PPCI combustion process.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"19 ","pages":"Article 100472"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Control of combustion stability in partial pre-mixed compression ignition (PPCI) engine is one of the main issues facing its application. However, the multi-parameter coupling and nonlinear increase in the combustion process make the model and controller design more difficult. Therefore, this study proposed a diesel engine control method that combines neural networks and model-free adaptive control in the absence of model and controller structure, which can achieve real-time coordination control of crank angle at 50 % of total heat release (CA50) and indicated mean effective pressure (IMEP) in the PPCI combustion process. Through comparisons under different operating conditions, it was found that the adjustment of algorithm parameters needs to adapt to the sensitivity changes of control parameters. In addition, the study validated the real-time performance and control effect of the algorithm, the experimental results indicate that the execution time of the control algorithm is approximately 5.59 milliseconds, which satisfies the real-time control requirements for the combustion process. By adjusting the weight coefficient matrix of the control authority, CA50 and IMEP are effectively tracked within the constraints of maximum pressure rise rate. The control error for CA50 remains within ±2.7 %, while that for IMEP is confined to ±1 %. Furthermore, the root mean square error for CA50 is measured at 1.1 crank angle, and for IMEP it stands at 23.5 kPa, thereby achieving precise real-time control of the PPCI combustion process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信