Harnessing distributed GPU computing for generalizable graph convolutional networks in power grid reliability assessments

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Somayajulu L.N. Dhulipala , Nicholas Casaprima , Audrey Olivier , Bjorn C. Vaagensmith , Timothy R. McJunkin , Ryan C. Hruska
{"title":"Harnessing distributed GPU computing for generalizable graph convolutional networks in power grid reliability assessments","authors":"Somayajulu L.N. Dhulipala ,&nbsp;Nicholas Casaprima ,&nbsp;Audrey Olivier ,&nbsp;Bjorn C. Vaagensmith ,&nbsp;Timothy R. McJunkin ,&nbsp;Ryan C. Hruska","doi":"10.1016/j.egyai.2025.100471","DOIUrl":null,"url":null,"abstract":"<div><div>Although machine learning (ML) has emerged as a powerful tool for rapidly assessing grid contingencies, prior studies have largely considered a static grid topology in their analyses. This limits their application, since they need to be re-trained for every new topology. This paper explores the development of generalizable graph convolutional network (GCN) models by pre-training them across a wide range of grid topologies and contingency types. We found that a GCN model with auto-regressive moving average (ARMA) layers with a line graph representation of the grid offered the best predictive performance in predicting voltage magnitudes (VM) and voltage angles (VA). We introduced the concept of phantom nodes to consider disparate grid topologies with a varying number of nodes and lines. For pre-training the GCN ARMA model across a variety of topologies, distributed graphics processing unit (GPU) computing afforded us significant training scalability. The predictive performance of this model on grid topologies that were part of the training data is substantially better than the direct current (DC) approximation. Although direct application of the pre-trained model to topologies that are not part of the grid is not particularly satisfactory, fine-tuning with small amounts of data from a specific topology of interest significantly improves predictive performance. In the context of foundational models in ML, this paper highlights the feasibility of training large-scale GNN models to assess the reliability of power grids by considering a wide variety of grid topologies and contingency types.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"19 ","pages":"Article 100471"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Although machine learning (ML) has emerged as a powerful tool for rapidly assessing grid contingencies, prior studies have largely considered a static grid topology in their analyses. This limits their application, since they need to be re-trained for every new topology. This paper explores the development of generalizable graph convolutional network (GCN) models by pre-training them across a wide range of grid topologies and contingency types. We found that a GCN model with auto-regressive moving average (ARMA) layers with a line graph representation of the grid offered the best predictive performance in predicting voltage magnitudes (VM) and voltage angles (VA). We introduced the concept of phantom nodes to consider disparate grid topologies with a varying number of nodes and lines. For pre-training the GCN ARMA model across a variety of topologies, distributed graphics processing unit (GPU) computing afforded us significant training scalability. The predictive performance of this model on grid topologies that were part of the training data is substantially better than the direct current (DC) approximation. Although direct application of the pre-trained model to topologies that are not part of the grid is not particularly satisfactory, fine-tuning with small amounts of data from a specific topology of interest significantly improves predictive performance. In the context of foundational models in ML, this paper highlights the feasibility of training large-scale GNN models to assess the reliability of power grids by considering a wide variety of grid topologies and contingency types.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信