Effects of He+ energy and W temperature on the initial W fuzz growth under the fusion-relevant He+ irradiation

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weifeng Liu, Chunjie Niu, Weiyuan Ni, Dongping Liu
{"title":"Effects of He+ energy and W temperature on the initial W fuzz growth under the fusion-relevant He+ irradiation","authors":"Weifeng Liu,&nbsp;Chunjie Niu,&nbsp;Weiyuan Ni,&nbsp;Dongping Liu","doi":"10.1016/j.jnucmat.2025.155630","DOIUrl":null,"url":null,"abstract":"<div><div>The growth of tungsten nanofuzz (W fuzz) induced by helium ions (He<sup>+</sup>) irradiation is a critical issue for fusion devices such as ITER. In our study, we investigated the behavior of tungsten (W) under helium ion (He<sup>+</sup>) irradiation, focusing on the conditions that promote the growth of tungsten fuzz (W fuzz). A comprehensive model was utilized to analyze the impact of varying He<sup>+</sup> energies and W temperatures on the W fuzz formation and growth. It was found that W fuzz was formed in a low-energy range from ∼10 eV to 200 eV and a higher-energy range of &gt;5 keV. W fuzz growth was facilitated below the He-W sputtering threshold energy while sputtering erosion became a significant hindrance just above this threshold. At He<sup>+</sup> energies reaching hundreds of eV, W fuzz growth was entirely suppressed due to the enhanced sputtering erosion. However, at higher He<sup>+</sup> energies around 5 keV, the He<sup>+</sup> penetration reduced the impact of sputtering erosion, allowing He bubbles to grow in the deeper W layer. W temperature varying in the range of 1000 – 2000 K played a crucial role in forming He bubbles – induced tensile stress in the W surface layer, therefore affecting W fuzz growth which strongly depended on the He<sup>+</sup> energy. These insights provided a detailed understanding of the energy-temperature relevance for W fuzz formation, which was crucial for predicting the performance and lifetime of W components in future fusion reactors.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"606 ","pages":"Article 155630"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002231152500025X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of tungsten nanofuzz (W fuzz) induced by helium ions (He+) irradiation is a critical issue for fusion devices such as ITER. In our study, we investigated the behavior of tungsten (W) under helium ion (He+) irradiation, focusing on the conditions that promote the growth of tungsten fuzz (W fuzz). A comprehensive model was utilized to analyze the impact of varying He+ energies and W temperatures on the W fuzz formation and growth. It was found that W fuzz was formed in a low-energy range from ∼10 eV to 200 eV and a higher-energy range of >5 keV. W fuzz growth was facilitated below the He-W sputtering threshold energy while sputtering erosion became a significant hindrance just above this threshold. At He+ energies reaching hundreds of eV, W fuzz growth was entirely suppressed due to the enhanced sputtering erosion. However, at higher He+ energies around 5 keV, the He+ penetration reduced the impact of sputtering erosion, allowing He bubbles to grow in the deeper W layer. W temperature varying in the range of 1000 – 2000 K played a crucial role in forming He bubbles – induced tensile stress in the W surface layer, therefore affecting W fuzz growth which strongly depended on the He+ energy. These insights provided a detailed understanding of the energy-temperature relevance for W fuzz formation, which was crucial for predicting the performance and lifetime of W components in future fusion reactors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信