Prediction of colorectal cancer microsatellite instability and tumor mutational burden from histopathological images using multiple instance learning

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Wenyan Wang , Wei Shi , Chuanqi Nie , Weipeng Xing , Hailong Yang , Feng Li , Jinyang Liu , Geng Tian , Bing Wang , Jialiang Yang
{"title":"Prediction of colorectal cancer microsatellite instability and tumor mutational burden from histopathological images using multiple instance learning","authors":"Wenyan Wang ,&nbsp;Wei Shi ,&nbsp;Chuanqi Nie ,&nbsp;Weipeng Xing ,&nbsp;Hailong Yang ,&nbsp;Feng Li ,&nbsp;Jinyang Liu ,&nbsp;Geng Tian ,&nbsp;Bing Wang ,&nbsp;Jialiang Yang","doi":"10.1016/j.bspc.2025.107608","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in deep learning have enabled the prediction of microsatellite instability (MSI) and tumor mutational burden (TMB) status of colorectal cancer (CRC) patients using whole slide histopathological images (WSIs). However, current methods suffer from poor prediction accuracy and lack interpretability, which hinders their clinical application. To address this, we propose a new cascaded two-stage multiple instance learning (MIL) method called CasNet for predicting MSI and TMB. CasNet employs a supervised ResNet model to extract informative image features from patches within the WSI. It then evaluates the importance of each patch using a gradient-based class activation graph (Grad-CAM) and an attention mechanism. On the CRC dataset from the cancer genome atlas (TCGA), CasNet achieved an area-under-the-curve (AUC) of 0.909 for predicting MSI status and a mean AUC of 0.8818 in 5-fold cross-validation for TMB prediction, outperforming seven other state-of-the-art methods. Furthermore, we demonstrate the robustness of CasNet by achieving AUC scores of 0.88 and 0.84 for MSI and TMB predictions, respectively, using only 40% of the samples for training. To enhance the interpretability of CasNet, a segmentation method based on Hover-Net is utilized to analyze the differences in cell content between MSI and MSS groups. Overall, CasNet is an accurate and interpretable method for predicting MSI and TMB, making it a promising in predicting biomarkers even with limited training data.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"104 ","pages":"Article 107608"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425001193","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in deep learning have enabled the prediction of microsatellite instability (MSI) and tumor mutational burden (TMB) status of colorectal cancer (CRC) patients using whole slide histopathological images (WSIs). However, current methods suffer from poor prediction accuracy and lack interpretability, which hinders their clinical application. To address this, we propose a new cascaded two-stage multiple instance learning (MIL) method called CasNet for predicting MSI and TMB. CasNet employs a supervised ResNet model to extract informative image features from patches within the WSI. It then evaluates the importance of each patch using a gradient-based class activation graph (Grad-CAM) and an attention mechanism. On the CRC dataset from the cancer genome atlas (TCGA), CasNet achieved an area-under-the-curve (AUC) of 0.909 for predicting MSI status and a mean AUC of 0.8818 in 5-fold cross-validation for TMB prediction, outperforming seven other state-of-the-art methods. Furthermore, we demonstrate the robustness of CasNet by achieving AUC scores of 0.88 and 0.84 for MSI and TMB predictions, respectively, using only 40% of the samples for training. To enhance the interpretability of CasNet, a segmentation method based on Hover-Net is utilized to analyze the differences in cell content between MSI and MSS groups. Overall, CasNet is an accurate and interpretable method for predicting MSI and TMB, making it a promising in predicting biomarkers even with limited training data.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信