The fluency-based semantic network of LLMs differs from humans

Ye Wang , Yaling Deng , Ge Wang , Tong Li , Hongjiang Xiao , Yuan Zhang
{"title":"The fluency-based semantic network of LLMs differs from humans","authors":"Ye Wang ,&nbsp;Yaling Deng ,&nbsp;Ge Wang ,&nbsp;Tong Li ,&nbsp;Hongjiang Xiao ,&nbsp;Yuan Zhang","doi":"10.1016/j.chbah.2024.100103","DOIUrl":null,"url":null,"abstract":"<div><div>Modern Large Language Models (LLMs) exhibit complexity and granularity similar to humans in the field of natural language processing, challenging the boundaries between humans and machines in language understanding and creativity. However, whether the semantic network of LLMs is similar to humans is still unclear. We examined the representative closed-source LLMs, GPT-3.5-Turbo and GPT-4, with open-source LLMs, LLaMA-2-70B, LLaMA-3-8B, LLaMA-3-70B using semantic fluency tasks widely used to study the structure of semantic networks in humans. To enhance the comparability of semantic networks between humans and LLMs, we innovatively employed role-playing to generate multiple agents, which is equivalent to recruiting multiple LLM participants. The results indicate that the semantic network of LLMs has poorer interconnectivity, local association organization, and flexibility compared to humans, which suggests that LLMs have lower search efficiency and more rigid thinking in the semantic space and may further affect their performance in creative writing and reasoning.</div></div>","PeriodicalId":100324,"journal":{"name":"Computers in Human Behavior: Artificial Humans","volume":"3 ","pages":"Article 100103"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior: Artificial Humans","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294988212400063X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern Large Language Models (LLMs) exhibit complexity and granularity similar to humans in the field of natural language processing, challenging the boundaries between humans and machines in language understanding and creativity. However, whether the semantic network of LLMs is similar to humans is still unclear. We examined the representative closed-source LLMs, GPT-3.5-Turbo and GPT-4, with open-source LLMs, LLaMA-2-70B, LLaMA-3-8B, LLaMA-3-70B using semantic fluency tasks widely used to study the structure of semantic networks in humans. To enhance the comparability of semantic networks between humans and LLMs, we innovatively employed role-playing to generate multiple agents, which is equivalent to recruiting multiple LLM participants. The results indicate that the semantic network of LLMs has poorer interconnectivity, local association organization, and flexibility compared to humans, which suggests that LLMs have lower search efficiency and more rigid thinking in the semantic space and may further affect their performance in creative writing and reasoning.
法学硕士基于流利度的语义网络不同于人类
现代大型语言模型(llm)在自然语言处理领域表现出与人类相似的复杂性和粒度,挑战了人类和机器在语言理解和创造力方面的界限。然而,法学硕士的语义网络是否与人类相似尚不清楚。我们研究了具有代表性的闭源LLMs, GPT-3.5-Turbo和GPT-4,以及开源LLMs, LLaMA-2-70B, LLaMA-3-8B, LLaMA-3-70B,使用广泛用于研究人类语义网络结构的语义流畅性任务。为了增强人类和法学硕士之间语义网络的可比性,我们创新地使用角色扮演来生成多个代理,这相当于招募多个法学硕士参与者。结果表明,与人类相比,llm语义网络的互联性、局部关联组织和灵活性较差,这表明llm在语义空间的搜索效率较低,思维更僵化,可能进一步影响其在创意写作和推理方面的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信