High-stable aqueous zinc metal anodes enabled by an oriented ZnQ zeolite protective layer with facile ion migration kinetics

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu
{"title":"High-stable aqueous zinc metal anodes enabled by an oriented ZnQ zeolite protective layer with facile ion migration kinetics","authors":"Shanghua Li ,&nbsp;Malin Li ,&nbsp;Xiwen Chi ,&nbsp;Xin Yin ,&nbsp;Zhaodi Luo ,&nbsp;Jihong Yu","doi":"10.3866/PKU.WHXB202309003","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc ion batteries (ZIBs) are regarded as one of the most promising energy storage systems due to their reliable safety, low cost, high volumetric capacity, and environmental friendliness. However, the utilization of Zn metal anode in aqueous electrolyte commonly encounters complex water-induced side reactions and uncontrollable dendrite growth issues. Constructing a protective layer on the surface of Zn anode is an effective strategy to alleviate side reactions and dendrite growth, achieving the stable operation of ZIBs with prolonged cycling life. However, the utilization of protective layers will increase interfacial resistance and result in high polarization in most cases. Thus, developing a desirable artificial protective layer with high ion migration kinetics is a significant task, enabling a fast Zn<sup>2+</sup> ion flux for homogeneous deposition with low polarization. Considering that porous aluminosilicate zeolite with a low Si/Al ratio can accommodate abundant framework-associated cations as charge carriers for conduction, herein, we prepared an oriented protective layer on the Zn anode using Zn-ion-exchanged Q zeolite with <strong>BPH</strong> topology (ZnQ@Zn), achieving a stable Zn anode with high ion migration kinetics. The ZnQ zeolite plates parallelly lay on the surface of Zn foil with the <em>c</em> axis normal to the substrate plane. The three-dimensional ordered channels and the oriented arrangement of ZnQ zeolite plates provide facile ion migration pathways for Zn<sup>2+</sup> ions, and the coordination of framework-associated Zn<sup>2+</sup> ions with water in zeolite channels also enables fast ion conduction kinetics and high corrosion resistance. Therefore, ZnQ@Zn exhibits enhanced ion conduction kinetics with reduced energy barriers for desolvation, charge transfer, and diffusion processes, resulting in a uniform ion flux to suppress dendrite growth. Consequently, the ZnQ@Zn symmetric cell displays an ultra-low voltage hysteresis of 27 ​mV with a long lifespan of over 1100 ​h at 1 ​mA ​cm<sup>−2</sup> and 1 ​mAh ​cm<sup>−2</sup>. Moreover, the ZnQ@Zn//NaV<sub>3</sub>O<sub>8</sub>·1.5H<sub>2</sub>O full cell delivers a superior long-term cycling performance with a high capacity retention of 96% after 1800 cycles at 8 ​A ​g<sup>−1</sup>. This work provides a new sight for constructing protective layers with fast ion migration kinetics to achieve high-stable Zn anodes, and extends the application of zeolite-based ion-conductive materials in energy storage devices.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 1","pages":"Article 100003"},"PeriodicalIF":10.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824000031","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc ion batteries (ZIBs) are regarded as one of the most promising energy storage systems due to their reliable safety, low cost, high volumetric capacity, and environmental friendliness. However, the utilization of Zn metal anode in aqueous electrolyte commonly encounters complex water-induced side reactions and uncontrollable dendrite growth issues. Constructing a protective layer on the surface of Zn anode is an effective strategy to alleviate side reactions and dendrite growth, achieving the stable operation of ZIBs with prolonged cycling life. However, the utilization of protective layers will increase interfacial resistance and result in high polarization in most cases. Thus, developing a desirable artificial protective layer with high ion migration kinetics is a significant task, enabling a fast Zn2+ ion flux for homogeneous deposition with low polarization. Considering that porous aluminosilicate zeolite with a low Si/Al ratio can accommodate abundant framework-associated cations as charge carriers for conduction, herein, we prepared an oriented protective layer on the Zn anode using Zn-ion-exchanged Q zeolite with BPH topology (ZnQ@Zn), achieving a stable Zn anode with high ion migration kinetics. The ZnQ zeolite plates parallelly lay on the surface of Zn foil with the c axis normal to the substrate plane. The three-dimensional ordered channels and the oriented arrangement of ZnQ zeolite plates provide facile ion migration pathways for Zn2+ ions, and the coordination of framework-associated Zn2+ ions with water in zeolite channels also enables fast ion conduction kinetics and high corrosion resistance. Therefore, ZnQ@Zn exhibits enhanced ion conduction kinetics with reduced energy barriers for desolvation, charge transfer, and diffusion processes, resulting in a uniform ion flux to suppress dendrite growth. Consequently, the ZnQ@Zn symmetric cell displays an ultra-low voltage hysteresis of 27 ​mV with a long lifespan of over 1100 ​h at 1 ​mA ​cm−2 and 1 ​mAh ​cm−2. Moreover, the ZnQ@Zn//NaV3O8·1.5H2O full cell delivers a superior long-term cycling performance with a high capacity retention of 96% after 1800 cycles at 8 ​A ​g−1. This work provides a new sight for constructing protective layers with fast ion migration kinetics to achieve high-stable Zn anodes, and extends the application of zeolite-based ion-conductive materials in energy storage devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信