Mingfeng Jiang , Lijun Lou , Wei Zhang , Xiaocheng Yang , Zhefeng Wang , Yongquan Wu , Wei Ke , Ling Xia
{"title":"Sleep apnea syndrome classification based om temporal ECG and SPO2 by using multimodal multichannel transfer module with squeeze and excitation","authors":"Mingfeng Jiang , Lijun Lou , Wei Zhang , Xiaocheng Yang , Zhefeng Wang , Yongquan Wu , Wei Ke , Ling Xia","doi":"10.1016/j.bspc.2025.107589","DOIUrl":null,"url":null,"abstract":"<div><div>Sleep Apnea Syndrome (SAS) is a prevalent sleep disorder characterized by intermittent pauses in breathing during sleep. If undiagnosed and untreated, SAS can have significant adverse effects on the human physiological system. Polysomnography (PSG) has been regarded as a gold-standard examination method for diagnosing sleep snoring (sleep apnea-hypopnea syndrome, OSAHS), but is often seen as inconvenient due to its complex operational requirements. This study introduces a novel method for SAS detection using temporal ECG and SPO2 signals via a CNN-RNN based Multimodal Multichannel Transfer Module with Squeeze and Excitation (MMTM-SE). Three hybrid CNN-RNN models were developed to extract features from ECG and SPO2 data. These extracted features were then fused through MMTM-SE structure, so as to enhance the correlation between different modalities and adaptively recalibrate channel features. The proposed method was validated by using the Apnea-ECG database across three deep learning networks. The experimental results show that the proposed approach outperformed existing methods, achieving a highest detection accuracy of 98.9%.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"104 ","pages":"Article 107589"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425001004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep Apnea Syndrome (SAS) is a prevalent sleep disorder characterized by intermittent pauses in breathing during sleep. If undiagnosed and untreated, SAS can have significant adverse effects on the human physiological system. Polysomnography (PSG) has been regarded as a gold-standard examination method for diagnosing sleep snoring (sleep apnea-hypopnea syndrome, OSAHS), but is often seen as inconvenient due to its complex operational requirements. This study introduces a novel method for SAS detection using temporal ECG and SPO2 signals via a CNN-RNN based Multimodal Multichannel Transfer Module with Squeeze and Excitation (MMTM-SE). Three hybrid CNN-RNN models were developed to extract features from ECG and SPO2 data. These extracted features were then fused through MMTM-SE structure, so as to enhance the correlation between different modalities and adaptively recalibrate channel features. The proposed method was validated by using the Apnea-ECG database across three deep learning networks. The experimental results show that the proposed approach outperformed existing methods, achieving a highest detection accuracy of 98.9%.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.