Liyun Ru , Yan Wang , Yichao Zhu , Zefeng Wang , Benpeng Wang , Yao-Jian Liang , Yunfei Xue
{"title":"Enhancing strain hardening in TiVZr lightweight medium entropy alloys with Mn-induced maze-like nanostructure","authors":"Liyun Ru , Yan Wang , Yichao Zhu , Zefeng Wang , Benpeng Wang , Yao-Jian Liang , Yunfei Xue","doi":"10.1016/j.intermet.2024.108630","DOIUrl":null,"url":null,"abstract":"<div><div>Although lightweight high/medium entropy alloys (HEAs/MEAs) with a body-centered cubic (BCC) structure are a promising class of structural materials, their actual applications are limited due to their low strain-hardening ability. This work proposes a method of enhancing the strain-hardening ability of TiVZr lightweight MEA by a small amount of Mn element. The TiVZr<sub>0.1</sub>Mn<sub>0.1</sub> exhibits a “maze-like” nanostructure that promotes dislocation multiplication during deformation, resulting in improved strength, strain hardening ability, and uniform elongation (>10 %). The considerable difference in lattice parameters between the Mn and TiVZr solid solution matrix contributes to significant solid solution strengthening, demonstrating a high specific tensile yield strength (∼180 MPa cm<sup>3</sup>/g).</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"178 ","pages":"Article 108630"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524004497","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although lightweight high/medium entropy alloys (HEAs/MEAs) with a body-centered cubic (BCC) structure are a promising class of structural materials, their actual applications are limited due to their low strain-hardening ability. This work proposes a method of enhancing the strain-hardening ability of TiVZr lightweight MEA by a small amount of Mn element. The TiVZr0.1Mn0.1 exhibits a “maze-like” nanostructure that promotes dislocation multiplication during deformation, resulting in improved strength, strain hardening ability, and uniform elongation (>10 %). The considerable difference in lattice parameters between the Mn and TiVZr solid solution matrix contributes to significant solid solution strengthening, demonstrating a high specific tensile yield strength (∼180 MPa cm3/g).
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.