{"title":"Interplay between complex fluid rheology and wall compliance in the flow resistance of deformable axisymmetric configurations","authors":"Evgeniy Boyko","doi":"10.1016/j.jnnfm.2024.105380","DOIUrl":null,"url":null,"abstract":"<div><div>Viscous flows through configurations fabricated from soft materials exert stresses at the solid–liquid interface, leading to a coupling between the flow field and the elastic deformation. The resulting fluid–structure interaction affects the relationship between the pressure drop <span><math><mrow><mi>Δ</mi><mi>p</mi></mrow></math></span> and the flow rate <span><math><mi>q</mi></math></span>, or the corresponding flow resistance <span><math><mrow><mi>Δ</mi><mi>p</mi><mo>/</mo><mi>q</mi></mrow></math></span>. While the flow resistance in deformable configurations has been extensively studied for Newtonian fluids, it remains largely unexplored for non-Newtonian fluids even at low Reynolds numbers. We analyze the steady low-Reynolds-number fluid–structure interaction between the flow of a non-Newtonian fluid and a deformable tube. We present a theoretical framework for calculating the leading-order effect of the complex fluid rheology and wall compliance on the flow resistance, which holds for a wide class of non-Newtonian constitutive models. For the weakly non-Newtonian limit, our theory provides the first-order non-Newtonian correction for the flow resistance solely using the known Newtonian solution for a deformable tube, bypassing the detailed calculations of the non-Newtonian fluid–structure-interaction problem. We illustrate our approach for a weakly viscoelastic Oldroyd-B fluid and a weakly shear-thinning Carreau fluid. In particular, we show analytically that both the viscoelasticity and shear thinning of the fluid and the compliance of the deformable tube decrease the flow resistance in the weakly non-Newtonian limit and identify the physical mechanisms governing this reduction.</div></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"336 ","pages":"Article 105380"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001964","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Viscous flows through configurations fabricated from soft materials exert stresses at the solid–liquid interface, leading to a coupling between the flow field and the elastic deformation. The resulting fluid–structure interaction affects the relationship between the pressure drop and the flow rate , or the corresponding flow resistance . While the flow resistance in deformable configurations has been extensively studied for Newtonian fluids, it remains largely unexplored for non-Newtonian fluids even at low Reynolds numbers. We analyze the steady low-Reynolds-number fluid–structure interaction between the flow of a non-Newtonian fluid and a deformable tube. We present a theoretical framework for calculating the leading-order effect of the complex fluid rheology and wall compliance on the flow resistance, which holds for a wide class of non-Newtonian constitutive models. For the weakly non-Newtonian limit, our theory provides the first-order non-Newtonian correction for the flow resistance solely using the known Newtonian solution for a deformable tube, bypassing the detailed calculations of the non-Newtonian fluid–structure-interaction problem. We illustrate our approach for a weakly viscoelastic Oldroyd-B fluid and a weakly shear-thinning Carreau fluid. In particular, we show analytically that both the viscoelasticity and shear thinning of the fluid and the compliance of the deformable tube decrease the flow resistance in the weakly non-Newtonian limit and identify the physical mechanisms governing this reduction.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.