{"title":"A topological analysis of the space of recipes","authors":"Emerson G. Escolar, Yuta Shimada, Masahiro Yuasa","doi":"10.1016/j.ijgfs.2024.101088","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the use of data-driven methods has provided insights into underlying patterns and principles behind culinary recipes. In this exploratory work, we introduce the use of topological data analysis, especially persistent homology, in order to study the space of culinary recipes. In particular, persistent homology analysis provides a set of recipes surrounding the multiscale “holes” in the space of existing recipes. We then propose a method to generate novel ingredient combinations using combinatorial optimization on this topological information. We made biscuits using the novel ingredient combinations, which were confirmed to be acceptable enough by a sensory evaluation study. Our findings indicate that topological data analysis has the potential for providing new tools and insights in the study of culinary recipes.</div></div>","PeriodicalId":48594,"journal":{"name":"International Journal of Gastronomy and Food Science","volume":"39 ","pages":"Article 101088"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Gastronomy and Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878450X2400221X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the use of data-driven methods has provided insights into underlying patterns and principles behind culinary recipes. In this exploratory work, we introduce the use of topological data analysis, especially persistent homology, in order to study the space of culinary recipes. In particular, persistent homology analysis provides a set of recipes surrounding the multiscale “holes” in the space of existing recipes. We then propose a method to generate novel ingredient combinations using combinatorial optimization on this topological information. We made biscuits using the novel ingredient combinations, which were confirmed to be acceptable enough by a sensory evaluation study. Our findings indicate that topological data analysis has the potential for providing new tools and insights in the study of culinary recipes.
期刊介绍:
International Journal of Gastronomy and Food Science is a peer-reviewed journal that explicitly focuses on the interface of food science and gastronomy. Articles focusing only on food science will not be considered. This journal equally encourages both scientists and chefs to publish original scientific papers, review articles and original culinary works. We seek articles with clear evidence of this interaction. From a scientific perspective, this publication aims to become the home for research from the whole community of food science and gastronomy.
IJGFS explores all aspects related to the growing field of the interaction of gastronomy and food science, in areas such as food chemistry, food technology and culinary techniques, food microbiology, genetics, sensory science, neuroscience, psychology, culinary concepts, culinary trends, and gastronomic experience (all the elements that contribute to the appreciation and enjoyment of the meal. Also relevant is research on science-based educational programs in gastronomy, anthropology, gastronomic history and food sociology. All these areas of knowledge are crucial to gastronomy, as they contribute to a better understanding of this broad term and its practical implications for science and society.