Thermally induced evolution in non-hydrogenated and hydrogenated amorphous carbon films: A molecular dynamics research

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shusen Guo , Zhaoxi Zhao , Jie Lv , Suhua Xiao , Yongshun Luo
{"title":"Thermally induced evolution in non-hydrogenated and hydrogenated amorphous carbon films: A molecular dynamics research","authors":"Shusen Guo ,&nbsp;Zhaoxi Zhao ,&nbsp;Jie Lv ,&nbsp;Suhua Xiao ,&nbsp;Yongshun Luo","doi":"10.1016/j.commatsci.2025.113661","DOIUrl":null,"url":null,"abstract":"<div><div>Amorphous carbons have received significant attention due to their excellent tribological properties. In this paper, molecular dynamics (MD) simulations were performed to study the thermally induced structural evolutions and hybridization transitions in non-hydrogenated (a-C) and hydrogenated (a-C:H) amorphous carbon films. The results indicated that the amorphous carbon gradually transforms into a graphitic carbon network under thermal effect. The hybridization transition is characterized by a three-stage process: (i) elongation of the existing bonds, (ii) breakage of one existing bond or formation of one bond, and (iii) relaxation. For low-density a-C film, the formation of void defects can be observed within high-temperature regions. With increasing densities, the diffusivity of a-C films decreases significantly, indicative of better thermal stability. Also, a glass-transition process can be observed in a-C films at around 3200 K, showing no obvious correlation with film densities. For a-C:H films, the incorporation of low-mass hydrogen atoms induces a highly diffusive amorphous network, which would deteriorate the thermal stability. With increasing hydrogen contents, both glass-transition temperatures and activation energies decrease. Also, as shown by the lower potential barriers and bond stretching distances, hybridization transitions are prone to occur in a-C:H films with high hydrogen contents.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"249 ","pages":"Article 113661"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625000047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous carbons have received significant attention due to their excellent tribological properties. In this paper, molecular dynamics (MD) simulations were performed to study the thermally induced structural evolutions and hybridization transitions in non-hydrogenated (a-C) and hydrogenated (a-C:H) amorphous carbon films. The results indicated that the amorphous carbon gradually transforms into a graphitic carbon network under thermal effect. The hybridization transition is characterized by a three-stage process: (i) elongation of the existing bonds, (ii) breakage of one existing bond or formation of one bond, and (iii) relaxation. For low-density a-C film, the formation of void defects can be observed within high-temperature regions. With increasing densities, the diffusivity of a-C films decreases significantly, indicative of better thermal stability. Also, a glass-transition process can be observed in a-C films at around 3200 K, showing no obvious correlation with film densities. For a-C:H films, the incorporation of low-mass hydrogen atoms induces a highly diffusive amorphous network, which would deteriorate the thermal stability. With increasing hydrogen contents, both glass-transition temperatures and activation energies decrease. Also, as shown by the lower potential barriers and bond stretching distances, hybridization transitions are prone to occur in a-C:H films with high hydrogen contents.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信