High-throughput screening of ternary and quaternary chalcogenide semiconductors for photovoltaics

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Md Habibur Rahman, Arun Mannodi-Kanakkithodi
{"title":"High-throughput screening of ternary and quaternary chalcogenide semiconductors for photovoltaics","authors":"Md Habibur Rahman,&nbsp;Arun Mannodi-Kanakkithodi","doi":"10.1016/j.commatsci.2024.113654","DOIUrl":null,"url":null,"abstract":"<div><div>Composition engineering offers a promising approach to discover new semiconductors with attractive optoelectronic properties. Screening based on high-throughput atomistic simulations provides a way to perform multi-objective optimization across a combinatorial compositional space. In this study, we used density functional theory (DFT) to explore the chemical space of ternary ABX<sub>2</sub> and quaternary A<sub>2</sub>BCX<sub>4</sub> chalcogenide semiconductors with X <span><math><mo>⊂</mo></math></span> {S, Se, Te}, focusing on their thermodynamic stability, optoelectronic properties, and defect behavior. The A<sub>2</sub>BCX<sub>4</sub> chemical space was defined as A <span><math><mo>⊂</mo></math></span>{Na, K, Rb, Cs, Cu, Ag}, B <span><math><mo>⊂</mo></math></span>{Mg, Ca, Sr, Ba, Zn, Cd}, and C <span><math><mo>⊂</mo></math></span> {Sn, Ge}, while the ABX<sub>2</sub> chemical space was defined as A <span><math><mo>⊂</mo></math></span> {Na, K, Rb, Cs, Cu, Ag} and B <span><math><mo>⊂</mo></math></span> {Al, Ga, In}. Each composition in either space was simulated using the Kesterite-type ordering as well as the Stannite-type ordering. For a total of 540 compounds, we performed geometry optimization, electronic structure, and optical absorption calculations using the GGA-PBEsol functional followed by the hybrid HSE06 functional with spin–orbit coupling (SOC), to determine formation and decomposition energies, bandgap, and spectroscopic limited maximum efficiency (SLME). Based on the HSE06+SOC computations, 45 compounds were found to be stable against decomposition and showed SLME <span><math><mo>&gt;</mo></math></span> 30%, suggesting high potential as single-junction solar cell absorbers. Although the Kesterite ordering is generally more stable than Stannite, the latter shows narrower bandgaps which are more suitable for solar absorption. We performed detailed point defect calculations on two selected candidates and found that they may be prone to harmful anti-site substitutional defects, which is a common issue in ternary and quaternary chalcogenides. We believe that further composition optimization via alloying at the cation or anion sites, and doping with suitable species, will help make the compounds more defect-tolerant, and our dataset provides the impetus for future studies.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"249 ","pages":"Article 113654"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624008759","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Composition engineering offers a promising approach to discover new semiconductors with attractive optoelectronic properties. Screening based on high-throughput atomistic simulations provides a way to perform multi-objective optimization across a combinatorial compositional space. In this study, we used density functional theory (DFT) to explore the chemical space of ternary ABX2 and quaternary A2BCX4 chalcogenide semiconductors with X {S, Se, Te}, focusing on their thermodynamic stability, optoelectronic properties, and defect behavior. The A2BCX4 chemical space was defined as A {Na, K, Rb, Cs, Cu, Ag}, B {Mg, Ca, Sr, Ba, Zn, Cd}, and C {Sn, Ge}, while the ABX2 chemical space was defined as A {Na, K, Rb, Cs, Cu, Ag} and B {Al, Ga, In}. Each composition in either space was simulated using the Kesterite-type ordering as well as the Stannite-type ordering. For a total of 540 compounds, we performed geometry optimization, electronic structure, and optical absorption calculations using the GGA-PBEsol functional followed by the hybrid HSE06 functional with spin–orbit coupling (SOC), to determine formation and decomposition energies, bandgap, and spectroscopic limited maximum efficiency (SLME). Based on the HSE06+SOC computations, 45 compounds were found to be stable against decomposition and showed SLME > 30%, suggesting high potential as single-junction solar cell absorbers. Although the Kesterite ordering is generally more stable than Stannite, the latter shows narrower bandgaps which are more suitable for solar absorption. We performed detailed point defect calculations on two selected candidates and found that they may be prone to harmful anti-site substitutional defects, which is a common issue in ternary and quaternary chalcogenides. We believe that further composition optimization via alloying at the cation or anion sites, and doping with suitable species, will help make the compounds more defect-tolerant, and our dataset provides the impetus for future studies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信