{"title":"Impact of the helicoidal geometry on the magnetic properties of permalloy nanowires for spintronic applications","authors":"Piero Terruzzi , Eduardo Saavedra , Juan Escrig","doi":"10.1016/j.commatsci.2024.113628","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the static and dynamic magnetic properties of helically shaped permalloy nanowires through micromagnetic simulations. We performed comprehensive numerical analyses to simulate hysteresis curves under an externally applied magnetic field aligned along the z-axis, focusing on the impact of the helicoidal geometry on the magnetic reversal mechanism. Our results reveal that, under specific geometric conditions, magnetization reverses through three distinct mechanisms. In Region I, vortex-type domain walls with varying chirality propagate at the top and bottom of the nanowire. In Region II, these walls exhibit uniform chirality at both ends, while in Region III, vertical vortices dominate. Additionally, we examined the dynamic susceptibility of the nanowires in the frequency range of 0–20 GHz. We found that varying the degree of helicoidal geometry influences both the position and the number of resonance peaks. Beyond these fundamental insights, our study highlights the potential applications of helically shaped nanowires in advanced magnetic sensing, data storage, and nanoscale spintronic devices.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"249 ","pages":"Article 113628"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624008498","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the static and dynamic magnetic properties of helically shaped permalloy nanowires through micromagnetic simulations. We performed comprehensive numerical analyses to simulate hysteresis curves under an externally applied magnetic field aligned along the z-axis, focusing on the impact of the helicoidal geometry on the magnetic reversal mechanism. Our results reveal that, under specific geometric conditions, magnetization reverses through three distinct mechanisms. In Region I, vortex-type domain walls with varying chirality propagate at the top and bottom of the nanowire. In Region II, these walls exhibit uniform chirality at both ends, while in Region III, vertical vortices dominate. Additionally, we examined the dynamic susceptibility of the nanowires in the frequency range of 0–20 GHz. We found that varying the degree of helicoidal geometry influences both the position and the number of resonance peaks. Beyond these fundamental insights, our study highlights the potential applications of helically shaped nanowires in advanced magnetic sensing, data storage, and nanoscale spintronic devices.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.