Unveiling electronic constraints on basal planes of 2D transition metal chalcogenides for optimizing hydrogen evolution catalysis: A theoretical analysis

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Faling Ling , Shuijie Zhang , Zheng Dai , Shaobo Wang , Yuting Zhao , Li Li , Xianju Zhou , Xiao Tang , Dengfeng Li , Xiaoqing Liu
{"title":"Unveiling electronic constraints on basal planes of 2D transition metal chalcogenides for optimizing hydrogen evolution catalysis: A theoretical analysis","authors":"Faling Ling ,&nbsp;Shuijie Zhang ,&nbsp;Zheng Dai ,&nbsp;Shaobo Wang ,&nbsp;Yuting Zhao ,&nbsp;Li Li ,&nbsp;Xianju Zhou ,&nbsp;Xiao Tang ,&nbsp;Dengfeng Li ,&nbsp;Xiaoqing Liu","doi":"10.1016/j.commatsci.2025.113658","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional transition metal dichalcogenides (2D-TMDs) have emerged as promising alternatives to noble metal platinum for hydrogen evolution reaction (HER) electrocatalysts. However, their inert basal planes present a significant challenge, and effective activation strategies have not been fully explored. In this study, we address this gap by performing density functional theory (DFT)-based first-principles calculations to develop a comprehensive theoretical framework for activating the basal planes of 2D-TMDs. We reveal two key electronic descriptors—(1) the energy of the lowest unoccupied state (<em>E</em><sub>lu</sub>) and (2) the degree of valence electron localization—that govern hydrogen adsorption on the basal planes. These insights form the foundation of a novel strategy: precision doping of metal atoms onto the basal planes of Mo- and W-based 2D-TMDs. This strategy provides unprecedented control over the electronic structures at the active sites, significantly enhancing valence electron localization and improving HER activity. Additionally, we determine the optimal doping concentration, offering crucial guidance for experimental studies. Our work presents a pioneering, descriptor-driven methodology for activating 2D-TMD basal planes, providing transformative insights for HER electrocatalyst design. This research sets a new direction for developing highly efficient water-splitting technologies, accelerating progress toward sustainable hydrogen production.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"249 ","pages":"Article 113658"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625000011","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional transition metal dichalcogenides (2D-TMDs) have emerged as promising alternatives to noble metal platinum for hydrogen evolution reaction (HER) electrocatalysts. However, their inert basal planes present a significant challenge, and effective activation strategies have not been fully explored. In this study, we address this gap by performing density functional theory (DFT)-based first-principles calculations to develop a comprehensive theoretical framework for activating the basal planes of 2D-TMDs. We reveal two key electronic descriptors—(1) the energy of the lowest unoccupied state (Elu) and (2) the degree of valence electron localization—that govern hydrogen adsorption on the basal planes. These insights form the foundation of a novel strategy: precision doping of metal atoms onto the basal planes of Mo- and W-based 2D-TMDs. This strategy provides unprecedented control over the electronic structures at the active sites, significantly enhancing valence electron localization and improving HER activity. Additionally, we determine the optimal doping concentration, offering crucial guidance for experimental studies. Our work presents a pioneering, descriptor-driven methodology for activating 2D-TMD basal planes, providing transformative insights for HER electrocatalyst design. This research sets a new direction for developing highly efficient water-splitting technologies, accelerating progress toward sustainable hydrogen production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信