Quasi Maximum Likelihood Estimation of Value at Risk and Expected Shortfall

IF 2 Q2 ECONOMICS
Leopoldo Catania , Alessandra Luati
{"title":"Quasi Maximum Likelihood Estimation of Value at Risk and Expected Shortfall","authors":"Leopoldo Catania ,&nbsp;Alessandra Luati","doi":"10.1016/j.ecosta.2021.08.003","DOIUrl":null,"url":null,"abstract":"<div><div><span>Quasi maximum likelihood estimation<span> of Value at Risk (VaR) and Expected Shortfall (ES) is discussed. The reference likelihood is that of a location-scale asymmetric Laplace distribution, related to a family of loss functions that lead to strictly consistent scoring functions for joint estimation of VaR and ES. The case of zero mean processes is considered, where quasi maximum likelihood estimators (QMLE) are consistent and asymptotically normal, as well as the case of non-zero mean processes, where quasi maximum likelihood estimators lead to inconsistent estimates due to lack of identification. In the latter situation, the </span></span>asymptotic properties of two stage quasi maximum likelihood estimators (2SQMLE) are derived. QMLE and 2SQMLE are related with sample and M-estimators and compared in terms of asymptotic efficiency. A simulation study investigates the finite sample properties of QMLE, 2SQMLE, sample and M-estimators of expected shortfall.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 23-34"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221000976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi maximum likelihood estimation of Value at Risk (VaR) and Expected Shortfall (ES) is discussed. The reference likelihood is that of a location-scale asymmetric Laplace distribution, related to a family of loss functions that lead to strictly consistent scoring functions for joint estimation of VaR and ES. The case of zero mean processes is considered, where quasi maximum likelihood estimators (QMLE) are consistent and asymptotically normal, as well as the case of non-zero mean processes, where quasi maximum likelihood estimators lead to inconsistent estimates due to lack of identification. In the latter situation, the asymptotic properties of two stage quasi maximum likelihood estimators (2SQMLE) are derived. QMLE and 2SQMLE are related with sample and M-estimators and compared in terms of asymptotic efficiency. A simulation study investigates the finite sample properties of QMLE, 2SQMLE, sample and M-estimators of expected shortfall.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信