{"title":"Quasi Maximum Likelihood Estimation of Value at Risk and Expected Shortfall","authors":"Leopoldo Catania , Alessandra Luati","doi":"10.1016/j.ecosta.2021.08.003","DOIUrl":null,"url":null,"abstract":"<div><div><span>Quasi maximum likelihood estimation<span> of Value at Risk (VaR) and Expected Shortfall (ES) is discussed. The reference likelihood is that of a location-scale asymmetric Laplace distribution, related to a family of loss functions that lead to strictly consistent scoring functions for joint estimation of VaR and ES. The case of zero mean processes is considered, where quasi maximum likelihood estimators (QMLE) are consistent and asymptotically normal, as well as the case of non-zero mean processes, where quasi maximum likelihood estimators lead to inconsistent estimates due to lack of identification. In the latter situation, the </span></span>asymptotic properties of two stage quasi maximum likelihood estimators (2SQMLE) are derived. QMLE and 2SQMLE are related with sample and M-estimators and compared in terms of asymptotic efficiency. A simulation study investigates the finite sample properties of QMLE, 2SQMLE, sample and M-estimators of expected shortfall.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 23-34"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221000976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi maximum likelihood estimation of Value at Risk (VaR) and Expected Shortfall (ES) is discussed. The reference likelihood is that of a location-scale asymmetric Laplace distribution, related to a family of loss functions that lead to strictly consistent scoring functions for joint estimation of VaR and ES. The case of zero mean processes is considered, where quasi maximum likelihood estimators (QMLE) are consistent and asymptotically normal, as well as the case of non-zero mean processes, where quasi maximum likelihood estimators lead to inconsistent estimates due to lack of identification. In the latter situation, the asymptotic properties of two stage quasi maximum likelihood estimators (2SQMLE) are derived. QMLE and 2SQMLE are related with sample and M-estimators and compared in terms of asymptotic efficiency. A simulation study investigates the finite sample properties of QMLE, 2SQMLE, sample and M-estimators of expected shortfall.
期刊介绍:
Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.