Balancing convergence and diversity: Gaussian mixture models in adaptive weight vector strategies for multi-objective algorithms

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xuepeng Ren , Maocai Wang , Guangming Dai , Lei Peng , Xiaoyu Chen , Zhiming Song
{"title":"Balancing convergence and diversity: Gaussian mixture models in adaptive weight vector strategies for multi-objective algorithms","authors":"Xuepeng Ren ,&nbsp;Maocai Wang ,&nbsp;Guangming Dai ,&nbsp;Lei Peng ,&nbsp;Xiaoyu Chen ,&nbsp;Zhiming Song","doi":"10.1016/j.ins.2024.121858","DOIUrl":null,"url":null,"abstract":"<div><div>In the study of decomposition-based multi-objective evolutionary algorithms, the adaptive weight vector approach effectively balances algorithm convergence and diversity. A common method for weight vector adaptation uses a population sparsity strategy, which calculates sparsity via Euclidean distance. However, this method causes individuals with low sparsity to cluster at the center of the objective space, while those with high sparsity spread to the edges, disrupting the convergence-diversity balance. To address this issue, this paper proposes using a Gaussian mixture model. This model treats data as a mix of multiple Gaussian distributions, partitioning the data space more flexibly. First, the paper analyzes various algorithms that adjust weight vectors using the sparsity strategy, highlighting their shortcomings. Then, it demonstrates how Gaussian mixture models can better divide the space and accurately identify individuals with different sparsity levels, correcting traditional sparsity calculation flaws. Since the population in the objective space changes during evolution, selecting appropriate component parameters is crucial. This paper uses the elbow rule to adaptively select these parameters. The experimental section includes three sets of experiments comparing the proposed algorithm with several popular algorithms, including a study on real mechanical bearing optimization. Results show that the proposed algorithm is highly competitive.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"700 ","pages":"Article 121858"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524017729","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the study of decomposition-based multi-objective evolutionary algorithms, the adaptive weight vector approach effectively balances algorithm convergence and diversity. A common method for weight vector adaptation uses a population sparsity strategy, which calculates sparsity via Euclidean distance. However, this method causes individuals with low sparsity to cluster at the center of the objective space, while those with high sparsity spread to the edges, disrupting the convergence-diversity balance. To address this issue, this paper proposes using a Gaussian mixture model. This model treats data as a mix of multiple Gaussian distributions, partitioning the data space more flexibly. First, the paper analyzes various algorithms that adjust weight vectors using the sparsity strategy, highlighting their shortcomings. Then, it demonstrates how Gaussian mixture models can better divide the space and accurately identify individuals with different sparsity levels, correcting traditional sparsity calculation flaws. Since the population in the objective space changes during evolution, selecting appropriate component parameters is crucial. This paper uses the elbow rule to adaptively select these parameters. The experimental section includes three sets of experiments comparing the proposed algorithm with several popular algorithms, including a study on real mechanical bearing optimization. Results show that the proposed algorithm is highly competitive.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信