Undisturbed velocity recovery with transient and weak inertia effects in volume-filtered simulations of particle-laden flows

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fabien Evrard , Akshay Chandran , Ricardo Cortez , Berend van Wachem
{"title":"Undisturbed velocity recovery with transient and weak inertia effects in volume-filtered simulations of particle-laden flows","authors":"Fabien Evrard ,&nbsp;Akshay Chandran ,&nbsp;Ricardo Cortez ,&nbsp;Berend van Wachem","doi":"10.1016/j.jcp.2024.113684","DOIUrl":null,"url":null,"abstract":"<div><div>In volume-filtered Euler-Lagrange simulations of particle-laden flows, the fluid forces acting on a particle are estimated using reduced models, which rely on the knowledge of the local <em>undisturbed flow</em> for that particle. Since the two-way coupling between the particle and the fluid creates a local flow perturbation, the filtered fluid velocity interpolated to the particle location must be corrected prior to estimating the fluid forces, so as to subtract the contribution of this perturbation and recover the local undisturbed flow with good accuracy. In this manuscript, we present a new model for estimating a particle's self-induced flow disturbance that accounts for its transient development and for inertial effects related to finite particle Reynolds numbers. The model also does not require the direction of the momentum feedback to align with the direction of the particle's relative velocity, allowing force contributions other than the steady drag force to be considered. It is based upon the linearization of the volume-filtered equations governing the particle's self-induced flow disturbance, such that their solution can be expressed as a linear combination of regularized transient Stokeslet contributions. Tested on a range of numerical cases, the model is shown to consistently estimate the particle's self-induced flow disturbance with high accuracy both in steady and highly transient flow environments, as well as for finite particle Reynolds numbers.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"523 ","pages":"Article 113684"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002199912400932X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In volume-filtered Euler-Lagrange simulations of particle-laden flows, the fluid forces acting on a particle are estimated using reduced models, which rely on the knowledge of the local undisturbed flow for that particle. Since the two-way coupling between the particle and the fluid creates a local flow perturbation, the filtered fluid velocity interpolated to the particle location must be corrected prior to estimating the fluid forces, so as to subtract the contribution of this perturbation and recover the local undisturbed flow with good accuracy. In this manuscript, we present a new model for estimating a particle's self-induced flow disturbance that accounts for its transient development and for inertial effects related to finite particle Reynolds numbers. The model also does not require the direction of the momentum feedback to align with the direction of the particle's relative velocity, allowing force contributions other than the steady drag force to be considered. It is based upon the linearization of the volume-filtered equations governing the particle's self-induced flow disturbance, such that their solution can be expressed as a linear combination of regularized transient Stokeslet contributions. Tested on a range of numerical cases, the model is shown to consistently estimate the particle's self-induced flow disturbance with high accuracy both in steady and highly transient flow environments, as well as for finite particle Reynolds numbers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信