The analysis for the transition dynamics of sleep states through the driving effects of the cholinergic inputs to hippocampal oscillations

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Zhengyong Song , Denggui Fan , Songan Hou , Qingyun Wang
{"title":"The analysis for the transition dynamics of sleep states through the driving effects of the cholinergic inputs to hippocampal oscillations","authors":"Zhengyong Song ,&nbsp;Denggui Fan ,&nbsp;Songan Hou ,&nbsp;Qingyun Wang","doi":"10.1016/j.physleta.2024.130160","DOIUrl":null,"url":null,"abstract":"<div><div>Cholinergic inputs from the medial septum (MS) affect hippocampal memory during sleep. However, computational modeling of sleep transitions is currently lacking. Here, we use eight coupled rate equations to build a septo-hippocampal cholinergic network. The numerical results indicate that enhanced cholinergic inputs in the model can effectively suppress hippocampal ripple oscillations and shift to theta states. This exchange of dominant rhythms reflects sleep state transitions and corresponds to the results of physiological experiments. By analyzing the dynamical mechanisms underlying this transition, we found that this change originates from a bifurcation phenomenon within the hippocampal network. Additionally, we found that the adaptive gain parameter can effectively modulate the up-state oscillatory activity of the hippocampal network and exhibits greater sensitivity during rapid eye movement (REM) sleep. These results will bring possible insights into computational characterizations and transformations of different sleep states, and provide a theoretical basis for neuromodulation in memory formation.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"531 ","pages":"Article 130160"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124008545","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cholinergic inputs from the medial septum (MS) affect hippocampal memory during sleep. However, computational modeling of sleep transitions is currently lacking. Here, we use eight coupled rate equations to build a septo-hippocampal cholinergic network. The numerical results indicate that enhanced cholinergic inputs in the model can effectively suppress hippocampal ripple oscillations and shift to theta states. This exchange of dominant rhythms reflects sleep state transitions and corresponds to the results of physiological experiments. By analyzing the dynamical mechanisms underlying this transition, we found that this change originates from a bifurcation phenomenon within the hippocampal network. Additionally, we found that the adaptive gain parameter can effectively modulate the up-state oscillatory activity of the hippocampal network and exhibits greater sensitivity during rapid eye movement (REM) sleep. These results will bring possible insights into computational characterizations and transformations of different sleep states, and provide a theoretical basis for neuromodulation in memory formation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信