Orbifolds and minimal modular extensions

IF 1.5 1区 数学 Q1 MATHEMATICS
Chongying Dong , Siu-Hung Ng , Li Ren
{"title":"Orbifolds and minimal modular extensions","authors":"Chongying Dong ,&nbsp;Siu-Hung Ng ,&nbsp;Li Ren","doi":"10.1016/j.aim.2025.110103","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>V</em> be a simple vertex operator algebra and <em>G</em> a finite automorphism group of <em>V</em> such that <span><math><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span> is regular, and the conformal weight of any irreducible <em>g</em>-twisted <em>V</em>-module <em>N</em> for <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span> is nonnegative and is zero if and only if <span><math><mi>N</mi><mo>=</mo><mi>V</mi></math></span>. It is established that if <em>V</em> is holomorphic, then the <span><math><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span>-module category <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup></mrow></msub></math></span> is a minimal modular extension of <span><math><mi>E</mi><mo>=</mo><mrow><mi>Rep</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and is equivalent to the Drinfeld center <span><math><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>Vec</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>)</mo></math></span> as modular tensor categories for some <span><math><mi>α</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span> with a canonical embedding of <span><math><mi>E</mi></math></span>. Moreover, the collection <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> of equivalence classes of the minimal modular extensions <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msup></mrow></msub></math></span> of <span><math><mi>E</mi></math></span> for holomorphic vertex operator algebras <em>V</em> with a <em>G</em>-action forms a group, which is isomorphic to a subgroup of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>(</mo><mi>G</mi><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></math></span>. Furthermore, any pointed modular category <span><math><mi>Z</mi><mo>(</mo><msubsup><mrow><mi>Vec</mi></mrow><mrow><mi>G</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo>)</mo></math></span> is equivalent to <span><math><msub><mrow><mi>C</mi></mrow><mrow><msubsup><mrow><mi>V</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>G</mi></mrow></msubsup></mrow></msub></math></span> for some positive definite even unimodular lattice <em>L</em>. In general, for any rational vertex operator algebra <em>U</em> with a <em>G</em>-action, <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>U</mi></mrow><mrow><mi>G</mi></mrow></msup></mrow></msub></math></span> is a minimal modular extension of the braided fusion subcategory <span><math><mi>F</mi></math></span> generated by the <span><math><msup><mrow><mi>U</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span>-submodules of <em>U</em>-modules. Furthermore, the group <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>E</mi><mo>)</mo></math></span> acts freely on the set of equivalence classes <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> of the minimal modular extensions <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>W</mi></mrow><mrow><mi>G</mi></mrow></msup></mrow></msub></math></span> of <span><math><mi>F</mi></math></span> for any rational vertex operator algebra <em>W</em> with a <em>G</em>-action.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110103"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000015","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let V be a simple vertex operator algebra and G a finite automorphism group of V such that VG is regular, and the conformal weight of any irreducible g-twisted V-module N for gG is nonnegative and is zero if and only if N=V. It is established that if V is holomorphic, then the VG-module category CVG is a minimal modular extension of E=Rep(G), and is equivalent to the Drinfeld center Z(VecGα) as modular tensor categories for some αH3(G,S1) with a canonical embedding of E. Moreover, the collection Mv(E) of equivalence classes of the minimal modular extensions CVG of E for holomorphic vertex operator algebras V with a G-action forms a group, which is isomorphic to a subgroup of H3(G,S1). Furthermore, any pointed modular category Z(VecGα) is equivalent to CVLG for some positive definite even unimodular lattice L. In general, for any rational vertex operator algebra U with a G-action, CUG is a minimal modular extension of the braided fusion subcategory F generated by the UG-submodules of U-modules. Furthermore, the group Mv(E) acts freely on the set of equivalence classes Mv(F) of the minimal modular extensions CWG of F for any rational vertex operator algebra W with a G-action.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信