ChemNav: An interactive visual tool to navigate in the latent space for chemical molecules discovery

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yang Zhang, Jie Li, Xu Chao
{"title":"ChemNav: An interactive visual tool to navigate in the latent space for chemical molecules discovery","authors":"Yang Zhang,&nbsp;Jie Li,&nbsp;Xu Chao","doi":"10.1016/j.visinf.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, AI-driven drug development has emerged as a prominent research topic in computer chemistry. A key focus is the application of generative models for molecule synthesis, which create extensive virtual libraries of chemical molecules based on latent spaces. However, locating molecules with desirable properties within the vast latent spaces remains a significant challenge. Large regions of invalid samples in the latent space, called “dead zones”, can impede the exploration efficiency. The process is always time-consuming and repetitive. Therefore, we aim to propose a visualization system to help experts identify potential molecules with desirable properties as they wander in the latent space. Specifically, we conducted a literature survey about the application of generative networks in drug synthesis to summarize the tasks and followed this with expert interviews to determine their requirements. Based on the above requirements, we introduce ChemNav, an interactive visual tool for navigating latent space for desirable molecules search. ChemNav incorporates a heuristic latent space interpolation path search algorithm to enhance the efficiency of valid molecule generation, and a similar sample search algorithm to accelerate the discovery of similar molecules. Evaluations of ChemNav through two case studies, a user study, and experiments demonstrated its effectiveness in inspiring researchers to explore the latent space for chemical molecule discovery.</div></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 4","pages":"Pages 60-70"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X24000500","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, AI-driven drug development has emerged as a prominent research topic in computer chemistry. A key focus is the application of generative models for molecule synthesis, which create extensive virtual libraries of chemical molecules based on latent spaces. However, locating molecules with desirable properties within the vast latent spaces remains a significant challenge. Large regions of invalid samples in the latent space, called “dead zones”, can impede the exploration efficiency. The process is always time-consuming and repetitive. Therefore, we aim to propose a visualization system to help experts identify potential molecules with desirable properties as they wander in the latent space. Specifically, we conducted a literature survey about the application of generative networks in drug synthesis to summarize the tasks and followed this with expert interviews to determine their requirements. Based on the above requirements, we introduce ChemNav, an interactive visual tool for navigating latent space for desirable molecules search. ChemNav incorporates a heuristic latent space interpolation path search algorithm to enhance the efficiency of valid molecule generation, and a similar sample search algorithm to accelerate the discovery of similar molecules. Evaluations of ChemNav through two case studies, a user study, and experiments demonstrated its effectiveness in inspiring researchers to explore the latent space for chemical molecule discovery.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信