Stochastic differential equations harvesting optimization with stochastic prices: Formulation and numerical solution

IF 1.4 Q2 MATHEMATICS, APPLIED
Miguel Reis, Nuno M. Brites
{"title":"Stochastic differential equations harvesting optimization with stochastic prices: Formulation and numerical solution","authors":"Miguel Reis,&nbsp;Nuno M. Brites","doi":"10.1016/j.rinam.2024.100533","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to achieve optimal harvesting in a random setting with a stochastic price structure. We use a general growth function to model the harvested population, a geometric Brownian motion to model price change, and add fluctuations in the interest rate over time to complete the analysis. Following this, we make use of the stochastic dynamic programming technique in order to obtain the Hamilton–Jacobi–Bellman equation, which ultimately results in the optimal combination of profit and effort. We employ the Crank–Nicolson discretization approach to obtain a numerical solution to the Hamilton–Jacobi–Bellman partial differential equation. For application purposes, we consider a Gompertz growth model and realistic data based on the Bangladesh shrimp.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100533"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424001031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to achieve optimal harvesting in a random setting with a stochastic price structure. We use a general growth function to model the harvested population, a geometric Brownian motion to model price change, and add fluctuations in the interest rate over time to complete the analysis. Following this, we make use of the stochastic dynamic programming technique in order to obtain the Hamilton–Jacobi–Bellman equation, which ultimately results in the optimal combination of profit and effort. We employ the Crank–Nicolson discretization approach to obtain a numerical solution to the Hamilton–Jacobi–Bellman partial differential equation. For application purposes, we consider a Gompertz growth model and realistic data based on the Bangladesh shrimp.
具有随机价格的随机微分方程:公式和数值解
本研究的目标是在随机价格结构的随机环境下实现最优收获。我们使用一般生长函数来模拟收获的人口,使用几何布朗运动来模拟价格变化,并添加利率随时间的波动来完成分析。在此基础上,利用随机动态规划技术得到Hamilton-Jacobi-Bellman方程,最终得到利润与努力的最优组合。本文采用Crank-Nicolson离散化方法得到了Hamilton-Jacobi-Bellman偏微分方程的数值解。为了应用目的,我们考虑了一个Gompertz生长模型和基于孟加拉国虾的实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信