Development and validation of a novel AI-derived index for predicting COPD medical costs in clinical practice

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Guan-Heng Liu , Chin-Ling Li , Chih-Yuan Yang , Shih-Feng Liu
{"title":"Development and validation of a novel AI-derived index for predicting COPD medical costs in clinical practice","authors":"Guan-Heng Liu ,&nbsp;Chin-Ling Li ,&nbsp;Chih-Yuan Yang ,&nbsp;Shih-Feng Liu","doi":"10.1016/j.csbj.2025.01.015","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Chronic Obstructive Pulmonary Disease (COPD) is a major contributor to global morbidity and healthcare costs. Accurately predicting these costs is crucial for resource allocation and patient care. This study developed and validated an AI-driven COPD Medical Cost Prediction Index (MCPI) to forecast healthcare expenses in COPD patients.</div></div><div><h3>Methods</h3><div>A retrospective analysis of 396 COPD patients was conducted, utilizing clinical, demographic, and comorbidity data. Missing data were addressed through advanced imputation techniques to minimize bias. The final predictors included interactions such as Age × BMI, alongside Tumor Presence, Number of Comorbidities, Acute Exacerbation frequency, and the DOSE Index. A Gradient Boosting model was constructed, optimized with Recursive Feature Elimination (RFE), and evaluated using 5-fold cross-validation on an 80/20 train-test split. Model performance was assessed with Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-squared (R²).</div></div><div><h3>Results</h3><div>On the training set, the model achieved an MSE of 0.049, MAE of 0.159, MAPE of 3.41 %, and R² of 0.703. On the test set, performance metrics included an MSE of 0.122, MAE of 0.258, MAPE of 5.49 %, and R² of 0.365. Tumor Presence, Age, and BMI were identified as key predictors of cost variability.</div></div><div><h3>Conclusions</h3><div>The MCPI demonstrates strong potential for predicting healthcare costs in COPD patients and enables targeted interventions for high-risk individuals. Future research should focus on validation with multicenter datasets and the inclusion of additional socioeconomic variables to enhance model generalizability and precision.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 541-547"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037025000169","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Chronic Obstructive Pulmonary Disease (COPD) is a major contributor to global morbidity and healthcare costs. Accurately predicting these costs is crucial for resource allocation and patient care. This study developed and validated an AI-driven COPD Medical Cost Prediction Index (MCPI) to forecast healthcare expenses in COPD patients.

Methods

A retrospective analysis of 396 COPD patients was conducted, utilizing clinical, demographic, and comorbidity data. Missing data were addressed through advanced imputation techniques to minimize bias. The final predictors included interactions such as Age × BMI, alongside Tumor Presence, Number of Comorbidities, Acute Exacerbation frequency, and the DOSE Index. A Gradient Boosting model was constructed, optimized with Recursive Feature Elimination (RFE), and evaluated using 5-fold cross-validation on an 80/20 train-test split. Model performance was assessed with Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-squared (R²).

Results

On the training set, the model achieved an MSE of 0.049, MAE of 0.159, MAPE of 3.41 %, and R² of 0.703. On the test set, performance metrics included an MSE of 0.122, MAE of 0.258, MAPE of 5.49 %, and R² of 0.365. Tumor Presence, Age, and BMI were identified as key predictors of cost variability.

Conclusions

The MCPI demonstrates strong potential for predicting healthcare costs in COPD patients and enables targeted interventions for high-risk individuals. Future research should focus on validation with multicenter datasets and the inclusion of additional socioeconomic variables to enhance model generalizability and precision.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信