Phase-field model with concentrating-potential terms on the boundary

IF 1.4 Q2 MATHEMATICS, APPLIED
Ángela Jiménez-Casas
{"title":"Phase-field model with concentrating-potential terms on the boundary","authors":"Ángela Jiménez-Casas","doi":"10.1016/j.rinam.2024.100523","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we analyze a generalization of the semilinear phase field model from G. Caginalp (1986, 1991) and A. Jiménez-Casas-A. Rodriguez-Bernal (1996, 2005), where we consider a singular term concentrated in a neighborhood of <span><math><mi>Γ</mi></math></span>, the boundary of domain. The neighborhood shrinks to <span><math><mi>Γ</mi></math></span> as a parameter <span><math><mi>ϵ</mi></math></span> approaches zero.</div><div>We prove that this family of solutions, of the new semilinear phase field model, converges in suitable spaces when this parameter tends to zero, to the solutions of a semilinear phase field problem where the concentrating potential are transformed into an extra flux condition on <span><math><mi>Γ</mi></math></span>.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100523"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we analyze a generalization of the semilinear phase field model from G. Caginalp (1986, 1991) and A. Jiménez-Casas-A. Rodriguez-Bernal (1996, 2005), where we consider a singular term concentrated in a neighborhood of Γ, the boundary of domain. The neighborhood shrinks to Γ as a parameter ϵ approaches zero.
We prove that this family of solutions, of the new semilinear phase field model, converges in suitable spaces when this parameter tends to zero, to the solutions of a semilinear phase field problem where the concentrating potential are transformed into an extra flux condition on Γ.
边界上有集中势项的相场模型
本文分析了G. Caginalp(1986, 1991)和a . jimsamnez - casas - a的半线性相场模型的推广。Rodriguez-Bernal(1996, 2005),其中我们考虑了一个集中在Γ邻域的奇异项,即域的边界。当一个参数趋于零时,邻域缩小到Γ。我们证明了新半线性相场模型的这组解,当该参数趋于零时,收敛于半线性相场问题的解,其中集中势转化为额外的通量条件在Γ上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信