Fully decoupled SAV Fourier-spectral scheme for the Cahn–Hilliard–Hele–Shaw system

IF 1.4 Q2 MATHEMATICS, APPLIED
Linhui Zhang , Hongen Jia , Hongbin Wang
{"title":"Fully decoupled SAV Fourier-spectral scheme for the Cahn–Hilliard–Hele–Shaw system","authors":"Linhui Zhang ,&nbsp;Hongen Jia ,&nbsp;Hongbin Wang","doi":"10.1016/j.rinam.2024.100534","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct first- and second-order fully discrete schemes for the Cahn–Hilliard–Hele–Shaw system based on the Fourier-spectral method for spatial discretization. For temporal discretization, we combine two efficient approaches, including the scalar auxiliary variable (SAV) method for linearizing nonlinear potentials and the zero-energy-contribution method (ZEC) for decoupling nonlinear couplings. These schemes are linear, fully decoupled, and unconditionally energy stable, requiring only the solution of a sequence of elliptic equations with constant coefficients at each time step. The rigorous proof of the error analysis for the first-order scheme is shown. In addition, several numerical examples are presented to demonstrate the stability, accuracy, and efficiency of the proposed scheme.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100534"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424001043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct first- and second-order fully discrete schemes for the Cahn–Hilliard–Hele–Shaw system based on the Fourier-spectral method for spatial discretization. For temporal discretization, we combine two efficient approaches, including the scalar auxiliary variable (SAV) method for linearizing nonlinear potentials and the zero-energy-contribution method (ZEC) for decoupling nonlinear couplings. These schemes are linear, fully decoupled, and unconditionally energy stable, requiring only the solution of a sequence of elliptic equations with constant coefficients at each time step. The rigorous proof of the error analysis for the first-order scheme is shown. In addition, several numerical examples are presented to demonstrate the stability, accuracy, and efficiency of the proposed scheme.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信