{"title":"Kolmogorov bounds for drift parameter estimation of continuously-observed SPDEs","authors":"Fares Alazemi, Abdulaziz Alsenafi, Khalifa Es-Sebaiy","doi":"10.1016/j.rinam.2025.100538","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this paper is to study the asymptotic behavior of the maximum likelihood estimator (MLE) and the minimum contrast estimator (MCE) of the drift coefficient for a stochastic partial differential equation based on continuous time observations of the Fourier coefficients <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi></mrow></math></span> of the solution, over some finite interval of time <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></mrow></math></span>. More precisely, we derive Berry–Esseen bounds in Kolmogorov distance for the MLE and MCE when <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span> and/or <span><math><mrow><mi>T</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. Moreover, we prove the strong consistency of the MCE as <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span> and/or <span><math><mrow><mi>T</mi><mo>→</mo><mi>∞</mi></mrow></math></span>.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100538"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is to study the asymptotic behavior of the maximum likelihood estimator (MLE) and the minimum contrast estimator (MCE) of the drift coefficient for a stochastic partial differential equation based on continuous time observations of the Fourier coefficients of the solution, over some finite interval of time . More precisely, we derive Berry–Esseen bounds in Kolmogorov distance for the MLE and MCE when and/or . Moreover, we prove the strong consistency of the MCE as and/or .