Inflations for representations of shifted quantum affine algebras

IF 1.5 1区 数学 Q1 MATHEMATICS
Théo Pinet
{"title":"Inflations for representations of shifted quantum affine algebras","authors":"Théo Pinet","doi":"10.1016/j.aim.2024.110093","DOIUrl":null,"url":null,"abstract":"<div><div>Fix a finite-dimensional simple Lie algebra <span><math><mi>g</mi></math></span> and let <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>⊆</mo><mi>g</mi></math></span> be a Lie subalgebra coming from a Dynkin diagram inclusion. Then, the corresponding restriction functor is not essentially surjective on finite-dimensional simple <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span>–modules.</div><div>In this article, we study Finkelberg–Tsymbaliuk's shifted quantum affine algebras <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mo>(</mo><mi>g</mi><mo>)</mo></math></span> and the associated categories <span><math><msup><mrow><mi>O</mi></mrow><mrow><mi>μ</mi></mrow></msup></math></span> (defined by Hernandez). In particular, we introduce natural subalgebras <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>ν</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>)</mo><mo>⊆</mo><msubsup><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>μ</mi></mrow></msubsup><mo>(</mo><mi>g</mi><mo>)</mo></math></span> and obtain a functor <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> from <span><math><msup><mrow><mi>O</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msup><mo>=</mo><msub><mrow><mo>⨁</mo></mrow><mrow><mi>μ</mi></mrow></msub><msup><mrow><mi>O</mi></mrow><mrow><mi>μ</mi></mrow></msup></math></span> to <span><math><msub><mrow><mo>⨁</mo></mrow><mrow><mi>ν</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>ν</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>)</mo><mtext>-Mod</mtext><mo>)</mo></math></span> using the canonical restriction functors. We then establish that <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> is essentially surjective on finite-dimensional simple objects by constructing notable preimages that we call <em>inflations</em>.</div><div>We conjecture that all simple objects in <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>J</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msubsup></math></span> (which is the analog of <span><math><msup><mrow><mi>O</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msup></math></span> for the subalgebras <span><math><msubsup><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>ν</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>)</mo></math></span>) admit some inflation and prove this for <span><math><mi>g</mi></math></span> of type A–B or <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> a direct sum of copies of <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>. We finally apply our results to deduce certain <em>R-matrices</em> and examples of <em>cluster structures over Grothendieck rings</em>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110093"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824006091","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fix a finite-dimensional simple Lie algebra g and let gJg be a Lie subalgebra coming from a Dynkin diagram inclusion. Then, the corresponding restriction functor is not essentially surjective on finite-dimensional simple gJ–modules.
In this article, we study Finkelberg–Tsymbaliuk's shifted quantum affine algebras Uqμ(g) and the associated categories Oμ (defined by Hernandez). In particular, we introduce natural subalgebras Uqν(gJ)Uqμ(g) and obtain a functor RJ from Osh=μOμ to ν(Uqν(gJ)-Mod) using the canonical restriction functors. We then establish that RJ is essentially surjective on finite-dimensional simple objects by constructing notable preimages that we call inflations.
We conjecture that all simple objects in OJsh (which is the analog of Osh for the subalgebras Uqν(gJ)) admit some inflation and prove this for g of type A–B or gJ a direct sum of copies of sl2 and sl3. We finally apply our results to deduce certain R-matrices and examples of cluster structures over Grothendieck rings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信