A dynamic financial risk prediction system for enterprises based on gradient boosting decision tree algorithm

IF 3.6
Lin Ji , Shenglu Li
{"title":"A dynamic financial risk prediction system for enterprises based on gradient boosting decision tree algorithm","authors":"Lin Ji ,&nbsp;Shenglu Li","doi":"10.1016/j.sasc.2025.200189","DOIUrl":null,"url":null,"abstract":"<div><div>As financial technology develops, the dynamic prediction of enterprise financial risks has become a focus of attention in the financial field. The research aims to construct a dynamic financial risk prediction system for enterprises based on gradient boosting decision trees to improve the predicting accuracy and adaptability. The minimum absolute value shrinkage and selection operator algorithm were used for dynamic indicator selection. A dynamic prediction model was constructed by combining gradient boosting decision trees. The decision tree model parameters were optimized through gradient optimization using the sparrow search algorithm. The integrated model performed excellently on multiple evaluation indicators, with an area under the receiver operating characteristic curve of 0.8. The average accuracy was 92.38%, the recall was 94.27%, and the root mean square error and average absolute error were lower than other models, demonstrating high prediction accuracy and reliability. The average user satisfaction of this integrated model was 85%, significantly higher than the 46% of the ordinary gradient boosting decision tree model. This model can not only accurately identify risk situations, but also meet the actual needs of enterprise users. This study provides a new financial risk assessment tool for enterprises. This helps enterprises to identify and manage potential risks in a timely manner, which is of great significance for promoting healthy and sustainable development of enterprises.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200189"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941925000079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As financial technology develops, the dynamic prediction of enterprise financial risks has become a focus of attention in the financial field. The research aims to construct a dynamic financial risk prediction system for enterprises based on gradient boosting decision trees to improve the predicting accuracy and adaptability. The minimum absolute value shrinkage and selection operator algorithm were used for dynamic indicator selection. A dynamic prediction model was constructed by combining gradient boosting decision trees. The decision tree model parameters were optimized through gradient optimization using the sparrow search algorithm. The integrated model performed excellently on multiple evaluation indicators, with an area under the receiver operating characteristic curve of 0.8. The average accuracy was 92.38%, the recall was 94.27%, and the root mean square error and average absolute error were lower than other models, demonstrating high prediction accuracy and reliability. The average user satisfaction of this integrated model was 85%, significantly higher than the 46% of the ordinary gradient boosting decision tree model. This model can not only accurately identify risk situations, but also meet the actual needs of enterprise users. This study provides a new financial risk assessment tool for enterprises. This helps enterprises to identify and manage potential risks in a timely manner, which is of great significance for promoting healthy and sustainable development of enterprises.
基于梯度增强决策树算法的企业财务风险动态预测系统
随着金融科技的发展,企业财务风险的动态预测已成为金融领域关注的焦点。本研究旨在构建基于梯度增强决策树的企业财务风险动态预测系统,以提高预测精度和适应性。采用最小绝对值收缩和选择算子算法对指标进行动态选择。结合梯度提升决策树构建了动态预测模型。采用麻雀搜索算法对决策树模型参数进行梯度优化。综合模型在多个评价指标上表现优异,受试者工作特征曲线下面积为0.8。平均准确率为92.38%,召回率为94.27%,均方根误差和平均绝对误差均低于其他模型,具有较高的预测精度和可靠性。该综合模型的平均用户满意度为85%,显著高于普通梯度提升决策树模型的46%。该模型既能准确识别风险情况,又能满足企业用户的实际需求。本研究为企业提供了一种新的财务风险评估工具。这有助于企业及时识别和管理潜在风险,对促进企业健康可持续发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信