Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology

Yiran Zhang, Lina Dong
{"title":"Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology","authors":"Yiran Zhang,&nbsp;Lina Dong","doi":"10.1016/j.sasc.2025.200187","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of the intelligent era, improving the positioning accuracy and operational stability of robots has become an urgent problem that needs to be solved. This study combines the advantages and disadvantages of visual synchronous positioning and mapping technology, inertial measurement units, and ultra-wideband technology to design a combined positioning system. The system first uses the pre-integration method of the inertial measurement unit to align the inertial measurement unit with the camera frequency. Then, it uses a tightly coupled method to fuse the measurement data of the system and the inertial measurement unit, forming a visual-inertial system. The study uses extended Kalman filtering to fuse the constructed visual-inertial system with ultra-wideband technology, creating an ultra-wideband/visual-inertial integrated system. Finally, simulation analysis was conducted on the constructed composite system. The results indicated that the RMSE of the ultra-wideband/visual-inertial system under light and dark conditions were 0.0123 and 0.0212, and 0.0114 and 0.0123, respectively, in the motion trajectories with and without forming a loop. In extremely complex motion trajectories, the RMSE error of the research system was 0.0123. This indicates that regardless of the conditions, the research system has long-term robustness and high-precision positioning performance.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200187"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941925000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of the intelligent era, improving the positioning accuracy and operational stability of robots has become an urgent problem that needs to be solved. This study combines the advantages and disadvantages of visual synchronous positioning and mapping technology, inertial measurement units, and ultra-wideband technology to design a combined positioning system. The system first uses the pre-integration method of the inertial measurement unit to align the inertial measurement unit with the camera frequency. Then, it uses a tightly coupled method to fuse the measurement data of the system and the inertial measurement unit, forming a visual-inertial system. The study uses extended Kalman filtering to fuse the constructed visual-inertial system with ultra-wideband technology, creating an ultra-wideband/visual-inertial integrated system. Finally, simulation analysis was conducted on the constructed composite system. The results indicated that the RMSE of the ultra-wideband/visual-inertial system under light and dark conditions were 0.0123 and 0.0212, and 0.0114 and 0.0123, respectively, in the motion trajectories with and without forming a loop. In extremely complex motion trajectories, the RMSE error of the research system was 0.0123. This indicates that regardless of the conditions, the research system has long-term robustness and high-precision positioning performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信