Zirconium and copper dual-doping strategy in NaNiFeMnO2: Advancing the electrochemical stability and capacity for sodium-ion batteries

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Safia Bibi, Tao Chen, Dan Sun, Kaiyu Liu
{"title":"Zirconium and copper dual-doping strategy in NaNiFeMnO2: Advancing the electrochemical stability and capacity for sodium-ion batteries","authors":"Safia Bibi,&nbsp;Tao Chen,&nbsp;Dan Sun,&nbsp;Kaiyu Liu","doi":"10.1016/j.solidstatesciences.2024.107822","DOIUrl":null,"url":null,"abstract":"<div><div>O3-type layered transition-metal oxide cathode materials are considered one of the most promising cathode materials for sodium ion batteries due to their high theoretical capacity and optimal operating potential. However, it encounters significant challenges, such as poor cycling stability and limited reversible capacity, primarily due to structural instability. Herein, we have successfully synthesized dual cation doped O3-type Na(Ni<sub>0.3</sub>Fe<sub>0.3</sub>Mn<sub>0.3</sub>)<sub>0.87</sub>Cu<sub>0.12</sub>Zr<sub>0.01</sub>O<sub>2</sub> (NaCuZrFNM). The co-doping of Zr/Cu into NaFNM layered structure led to an expansion of the sodium layer, enabling enhanced sodium ion mobility during charge/discharge processes compared to NaFNM. Therefore, sodium ions demonstrated faster diffusion in NaCuZrFNM than NaFNM. It was found that the Zr/Cu dual-doped NaFNM electrode deliverers a reversible capacity of 135.2 mA h/g at 0.1C as well as 121.5 mA h/g initial discharge capacity with remarkable capacity retention of 81.8 % at 1C after 250 cycles. Furthermore, it also exhibits the good rate performance of 82 mA h/g at high current density of 10C with 74.4 % capacity retention after 1000 cycles, indicating excellent structural stability. Our results demonstrate that Cu/Zr dual-doping in O3-type cathode materials is viable strategy for improving the long-term performance of sodium-ion batteries.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"160 ","pages":"Article 107822"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129325582400387X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

O3-type layered transition-metal oxide cathode materials are considered one of the most promising cathode materials for sodium ion batteries due to their high theoretical capacity and optimal operating potential. However, it encounters significant challenges, such as poor cycling stability and limited reversible capacity, primarily due to structural instability. Herein, we have successfully synthesized dual cation doped O3-type Na(Ni0.3Fe0.3Mn0.3)0.87Cu0.12Zr0.01O2 (NaCuZrFNM). The co-doping of Zr/Cu into NaFNM layered structure led to an expansion of the sodium layer, enabling enhanced sodium ion mobility during charge/discharge processes compared to NaFNM. Therefore, sodium ions demonstrated faster diffusion in NaCuZrFNM than NaFNM. It was found that the Zr/Cu dual-doped NaFNM electrode deliverers a reversible capacity of 135.2 mA h/g at 0.1C as well as 121.5 mA h/g initial discharge capacity with remarkable capacity retention of 81.8 % at 1C after 250 cycles. Furthermore, it also exhibits the good rate performance of 82 mA h/g at high current density of 10C with 74.4 % capacity retention after 1000 cycles, indicating excellent structural stability. Our results demonstrate that Cu/Zr dual-doping in O3-type cathode materials is viable strategy for improving the long-term performance of sodium-ion batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信