A bibliometric analysis of research on remote sensing-based monitoring of soil organic matter conducted between 2003 and 2023

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Xionghai Chen , Fei Yuan , Syed Tahir Ata-Ul-Karim , Xiaojun Liu , Yongchao Tian , Yan Zhu , Weixing Cao , Qiang Cao
{"title":"A bibliometric analysis of research on remote sensing-based monitoring of soil organic matter conducted between 2003 and 2023","authors":"Xionghai Chen ,&nbsp;Fei Yuan ,&nbsp;Syed Tahir Ata-Ul-Karim ,&nbsp;Xiaojun Liu ,&nbsp;Yongchao Tian ,&nbsp;Yan Zhu ,&nbsp;Weixing Cao ,&nbsp;Qiang Cao","doi":"10.1016/j.aiia.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>Soil organic matter (SOM) is a key metric for assessing soil quality and crop yield potential. It plays a vital role in maintaining the ecological balance environment and promoting sustainable farming practices. This review examines the evolving trends in remote sensing (<em>RS</em>)-based SOM monitoring by analyzing 739 scholarly publications from the Web of Science database from 2003 to 2023 using a bibliometric approach. The study reveals that research on RS-based SOM monitoring has entered a rapid growth phase since 2018, with China and the United States as the main contributors and an extensive international cooperation network. In model construction, high frequency covariates such as soil pH, precipitation, temperature, and topography significantly improved the prediction accuracy. Data preprocessing methods such as Standard Normal Variables (SNV), Principal Component Analysis (PCA), and Multiple Scattering Correction (MSC) enhanced data consistency. Traditional statistical models are gradually being replaced by nonlinear machine learning and deep learning methods (CNN, XGBoost, andStacking), which are particularly good at handling complex high-dimensional data. Regional spectral libraries (OzSoil and AfSIS) excel in local accuracy, while global spectral libraries (ISRIC and LUCAS) are more suitable for cross-region modeling, and the migration learning technique effectively improves the model generalization ability in low data regions. Integrated models (CNN-LSTM and GAN) have significant advantages in capturing the spatial and temporal dynamics of SOMs, and uncertainty quantification methods (Bayesian inference, Monte Carlo simulation) enhance the reliability of the models in multi-source data and data-scarce scenarios. Future research should focus on further optimization of multi-source data fusion and uncertainty quantification to promote the development and applicability of RS-based SOM monitoring techniques for precision soil management and sustainable agriculture.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 1","pages":"Pages 26-38"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721724000527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil organic matter (SOM) is a key metric for assessing soil quality and crop yield potential. It plays a vital role in maintaining the ecological balance environment and promoting sustainable farming practices. This review examines the evolving trends in remote sensing (RS)-based SOM monitoring by analyzing 739 scholarly publications from the Web of Science database from 2003 to 2023 using a bibliometric approach. The study reveals that research on RS-based SOM monitoring has entered a rapid growth phase since 2018, with China and the United States as the main contributors and an extensive international cooperation network. In model construction, high frequency covariates such as soil pH, precipitation, temperature, and topography significantly improved the prediction accuracy. Data preprocessing methods such as Standard Normal Variables (SNV), Principal Component Analysis (PCA), and Multiple Scattering Correction (MSC) enhanced data consistency. Traditional statistical models are gradually being replaced by nonlinear machine learning and deep learning methods (CNN, XGBoost, andStacking), which are particularly good at handling complex high-dimensional data. Regional spectral libraries (OzSoil and AfSIS) excel in local accuracy, while global spectral libraries (ISRIC and LUCAS) are more suitable for cross-region modeling, and the migration learning technique effectively improves the model generalization ability in low data regions. Integrated models (CNN-LSTM and GAN) have significant advantages in capturing the spatial and temporal dynamics of SOMs, and uncertainty quantification methods (Bayesian inference, Monte Carlo simulation) enhance the reliability of the models in multi-source data and data-scarce scenarios. Future research should focus on further optimization of multi-source data fusion and uncertainty quantification to promote the development and applicability of RS-based SOM monitoring techniques for precision soil management and sustainable agriculture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信