Bosonization of Feigin-Odesskii Poisson varieties

IF 1.5 1区 数学 Q1 MATHEMATICS
Zheng Hua , Alexander Polishchuk
{"title":"Bosonization of Feigin-Odesskii Poisson varieties","authors":"Zheng Hua ,&nbsp;Alexander Polishchuk","doi":"10.1016/j.aim.2024.110096","DOIUrl":null,"url":null,"abstract":"<div><div>The derived moduli stack of complexes of vector bundles on a Gorenstein Calabi-Yau curve admits a 0-shifted Poisson structure. Projective spaces with Feigin-Odesskii Poisson brackets are examples of such moduli spaces over complex elliptic curves <span><span>[6]</span></span>, <span><span>[7]</span></span>. By generalizing several results in our previous work <span><span>[10]</span></span>, <span><span>[11]</span></span>, <span><span>[12]</span></span> we construct a collection of auxiliary Poisson varieties equipped with Poisson morphisms to Feigin-Odesskii varieties. We call them <em>bosonizations</em> of Feigin-Odesskii varieties. These spaces appear as special cases of the moduli spaces of <em>chains</em>, which we introduce. We show that the moduli space of chains admits a shifted Poisson structure when the base is a Calabi-Yau variety of an arbitrary dimension. Using bosonization spaces mapping to the zero loci of the Feigin-Odesskii varieties, we show that the Feigin-Odesskii Poisson brackets on projective spaces (associated with stable bundles of arbitrary rank on elliptic curves) admit no infinitesimal symmetries. We also derive explicit formulas for the Poisson brackets on the bosonizations of the Feigin-Odesskii varieties associated with line bundles in a simplest nontrivial case.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"462 ","pages":"Article 110096"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824006121","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The derived moduli stack of complexes of vector bundles on a Gorenstein Calabi-Yau curve admits a 0-shifted Poisson structure. Projective spaces with Feigin-Odesskii Poisson brackets are examples of such moduli spaces over complex elliptic curves [6], [7]. By generalizing several results in our previous work [10], [11], [12] we construct a collection of auxiliary Poisson varieties equipped with Poisson morphisms to Feigin-Odesskii varieties. We call them bosonizations of Feigin-Odesskii varieties. These spaces appear as special cases of the moduli spaces of chains, which we introduce. We show that the moduli space of chains admits a shifted Poisson structure when the base is a Calabi-Yau variety of an arbitrary dimension. Using bosonization spaces mapping to the zero loci of the Feigin-Odesskii varieties, we show that the Feigin-Odesskii Poisson brackets on projective spaces (associated with stable bundles of arbitrary rank on elliptic curves) admit no infinitesimal symmetries. We also derive explicit formulas for the Poisson brackets on the bosonizations of the Feigin-Odesskii varieties associated with line bundles in a simplest nontrivial case.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信