RIFi: Robust and iterative indoor localization based on Wi-Fi RSS fingerprints

Wei Liu , Meng Niu , Yunghsiang S. Han
{"title":"RIFi: Robust and iterative indoor localization based on Wi-Fi RSS fingerprints","authors":"Wei Liu ,&nbsp;Meng Niu ,&nbsp;Yunghsiang S. Han","doi":"10.1016/j.jiixd.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>RSS fingerprint based indoor localization consists of two phases: offline phase and online phase. A RSS fingerprint database constructed at the offline phase may be outdated for online phase, which may significantly degrade the localization performance. Furthermore, maintaining an RSS fingerprint database is a labor intensive and time-consuming task. In this paper, we proposes a robust and iterative indoor localization algorithm based on Wi-Fi RSS fingerprints, referred to as RIFi, which does not need to update the RSS fingerprint database and perform well even if the RSS fingerprint database is outdated. Specifically, we demonstrate that smaller localization area can provides better performance for outdated fingerprint database. Furthermore, we propose an iterative algorithm to determine the smaller localization area. Finally, the K-nearest neighbors (KNN) algorithm is invoked for the determined smaller localization area. Simulation results show that the proposed RIFi algorithm can significantly outperforms the traditional KNN algorithm for outdated RSS fingerprint database, and is more robust.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 1","pages":"Pages 1-18"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715924000672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RSS fingerprint based indoor localization consists of two phases: offline phase and online phase. A RSS fingerprint database constructed at the offline phase may be outdated for online phase, which may significantly degrade the localization performance. Furthermore, maintaining an RSS fingerprint database is a labor intensive and time-consuming task. In this paper, we proposes a robust and iterative indoor localization algorithm based on Wi-Fi RSS fingerprints, referred to as RIFi, which does not need to update the RSS fingerprint database and perform well even if the RSS fingerprint database is outdated. Specifically, we demonstrate that smaller localization area can provides better performance for outdated fingerprint database. Furthermore, we propose an iterative algorithm to determine the smaller localization area. Finally, the K-nearest neighbors (KNN) algorithm is invoked for the determined smaller localization area. Simulation results show that the proposed RIFi algorithm can significantly outperforms the traditional KNN algorithm for outdated RSS fingerprint database, and is more robust.
RIFi:基于Wi-Fi RSS指纹的鲁棒迭代室内定位
基于RSS指纹的室内定位分为离线阶段和在线阶段。在离线阶段构建的RSS指纹数据库在在线阶段可能已经过时,这可能会严重降低定位性能。此外,维护RSS指纹数据库是一项劳动密集型且耗时的任务。本文提出了一种基于Wi-Fi RSS指纹的鲁棒迭代室内定位算法(RIFi),该算法不需要更新RSS指纹库,即使RSS指纹库过时也能保持良好的性能。具体来说,我们证明了较小的定位区域可以为过时的指纹数据库提供更好的性能。此外,我们提出了一种迭代算法来确定较小的定位区域。最后,对确定的较小的定位区域调用k近邻(KNN)算法。仿真结果表明,对于过时的RSS指纹库,本文提出的RIFi算法可以显著优于传统的KNN算法,并且具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信