Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations

Panagiotis Korfiatis PhD , Timothy L. Kline PhD , Holly M. Meyer MS , Sana Khalid MS , Timothy Leiner MD , Brenna T. Loufek MS , Daniel Blezek PhD , David E. Vidal JD , Robert P. Hartman MD , Lori J. Joppa MBA , Andrew D. Missert PhD , Theodora A. Potretzke MD , Jerome P. Taubel , Jason A. Tjelta BS , Matthew R. Callstrom MD , Eric E. Williamson MD
{"title":"Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations","authors":"Panagiotis Korfiatis PhD ,&nbsp;Timothy L. Kline PhD ,&nbsp;Holly M. Meyer MS ,&nbsp;Sana Khalid MS ,&nbsp;Timothy Leiner MD ,&nbsp;Brenna T. Loufek MS ,&nbsp;Daniel Blezek PhD ,&nbsp;David E. Vidal JD ,&nbsp;Robert P. Hartman MD ,&nbsp;Lori J. Joppa MBA ,&nbsp;Andrew D. Missert PhD ,&nbsp;Theodora A. Potretzke MD ,&nbsp;Jerome P. Taubel ,&nbsp;Jason A. Tjelta BS ,&nbsp;Matthew R. Callstrom MD ,&nbsp;Eric E. Williamson MD","doi":"10.1016/j.mcpdig.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><div>Integration of AI-enabled algorithms into the radiology workflow presents a complex array of challenges that span operational, technical, clinical, and regulatory domains. Successfully overcoming these hurdles requires a multifaceted approach, including strategic planning, educational initiatives, and careful consideration of the practical implications for radiologists' workloads. Institutions must navigate these challenges with a clear understanding of the potential benefits and limitations of both vended and in-house developed AI tools.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"3 1","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224001214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integration of AI-enabled algorithms into the radiology workflow presents a complex array of challenges that span operational, technical, clinical, and regulatory domains. Successfully overcoming these hurdles requires a multifaceted approach, including strategic planning, educational initiatives, and careful consideration of the practical implications for radiologists' workloads. Institutions must navigate these challenges with a clear understanding of the potential benefits and limitations of both vended and in-house developed AI tools.
在放射学工作流程中实现人工智能算法:挑战和考虑
将支持人工智能的算法集成到放射学工作流程中,带来了一系列复杂的挑战,涉及操作、技术、临床和监管领域。成功地克服这些障碍需要多方面的方法,包括战略规划、教育倡议和仔细考虑对放射科医生工作量的实际影响。机构必须清楚地了解人工智能工具的潜在优势和局限性,才能应对这些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信