Fine-Tuning Large Language Models for Specialized Use Cases

D.M. Anisuzzaman PhD, Jeffrey G. Malins PhD, Paul A. Friedman MD, Zachi I. Attia PhD
{"title":"Fine-Tuning Large Language Models for Specialized Use Cases","authors":"D.M. Anisuzzaman PhD,&nbsp;Jeffrey G. Malins PhD,&nbsp;Paul A. Friedman MD,&nbsp;Zachi I. Attia PhD","doi":"10.1016/j.mcpdig.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Large language models (LLMs) are a type of artificial intelligence, which operate by predicting and assembling sequences of words that are statistically likely to follow from a given text input. With this basic ability, LLMs are able to answer complex questions and follow extremely complex instructions. Products created using LLMs such as ChatGPT by OpenAI and Claude by Anthropic have created a huge amount of traction and user engagements and revolutionized the way we interact with technology, bringing a new dimension to human-computer interaction. Fine-tuning is a process in which a pretrained model, such as an LLM, is further trained on a custom data set to adapt it for specialized tasks or domains. In this review, we outline some of the major methodologic approaches and techniques that can be used to fine-tune LLMs for specialized use cases and enumerate the general steps required for carrying out LLM fine-tuning. We then illustrate a few of these methodologic approaches by describing several specific use cases of fine-tuning LLMs across medical subspecialties. Finally, we close with a consideration of some of the benefits and limitations associated with fine-tuning LLMs for specialized use cases, with an emphasis on specific concerns in the field of medicine.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"3 1","pages":"Article 100184"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224001147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) are a type of artificial intelligence, which operate by predicting and assembling sequences of words that are statistically likely to follow from a given text input. With this basic ability, LLMs are able to answer complex questions and follow extremely complex instructions. Products created using LLMs such as ChatGPT by OpenAI and Claude by Anthropic have created a huge amount of traction and user engagements and revolutionized the way we interact with technology, bringing a new dimension to human-computer interaction. Fine-tuning is a process in which a pretrained model, such as an LLM, is further trained on a custom data set to adapt it for specialized tasks or domains. In this review, we outline some of the major methodologic approaches and techniques that can be used to fine-tune LLMs for specialized use cases and enumerate the general steps required for carrying out LLM fine-tuning. We then illustrate a few of these methodologic approaches by describing several specific use cases of fine-tuning LLMs across medical subspecialties. Finally, we close with a consideration of some of the benefits and limitations associated with fine-tuning LLMs for specialized use cases, with an emphasis on specific concerns in the field of medicine.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信