Rusul J. Alsaedi, Joachim Gudmundsson, André van Renssen
{"title":"Pattern formation for fat robots with lights","authors":"Rusul J. Alsaedi, Joachim Gudmundsson, André van Renssen","doi":"10.1016/j.comgeo.2024.102161","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set of <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span> unit disk robots in the Euclidean plane, we consider the Pattern Formation problem, i.e., the robots must reposition themselves to form a given target pattern. This problem arises under obstructed visibility, where a robot cannot see another robot if there is a third robot on the straight line segment between the two robots. Recently, this problem was solved in the asynchonous model for fat robots that agree on at least one axis in the robots with lights model where each robot is equipped with an externally visible persistent light that can assume colors from a fixed set of colors <span><span>[1]</span></span>. In this work, we reduce the number of colors needed and remove the axis-agreement requirement in the fully synchronous model. In particular, we present an algorithm requiring 7 colors when scaling the target pattern is allowed and an 8-color algorithm if scaling is not allowed. Our algorithms run in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>O</mi><mo>(</mo><mi>q</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> rounds with probability at least <span><math><mn>1</mn><mo>−</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>q</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102161"},"PeriodicalIF":0.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212400083X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a set of unit disk robots in the Euclidean plane, we consider the Pattern Formation problem, i.e., the robots must reposition themselves to form a given target pattern. This problem arises under obstructed visibility, where a robot cannot see another robot if there is a third robot on the straight line segment between the two robots. Recently, this problem was solved in the asynchonous model for fat robots that agree on at least one axis in the robots with lights model where each robot is equipped with an externally visible persistent light that can assume colors from a fixed set of colors [1]. In this work, we reduce the number of colors needed and remove the axis-agreement requirement in the fully synchronous model. In particular, we present an algorithm requiring 7 colors when scaling the target pattern is allowed and an 8-color algorithm if scaling is not allowed. Our algorithms run in rounds with probability at least .
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.