Pattern formation for fat robots with lights

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Rusul J. Alsaedi, Joachim Gudmundsson, André van Renssen
{"title":"Pattern formation for fat robots with lights","authors":"Rusul J. Alsaedi,&nbsp;Joachim Gudmundsson,&nbsp;André van Renssen","doi":"10.1016/j.comgeo.2024.102161","DOIUrl":null,"url":null,"abstract":"<div><div>Given a set of <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span> unit disk robots in the Euclidean plane, we consider the Pattern Formation problem, i.e., the robots must reposition themselves to form a given target pattern. This problem arises under obstructed visibility, where a robot cannot see another robot if there is a third robot on the straight line segment between the two robots. Recently, this problem was solved in the asynchonous model for fat robots that agree on at least one axis in the robots with lights model where each robot is equipped with an externally visible persistent light that can assume colors from a fixed set of colors <span><span>[1]</span></span>. In this work, we reduce the number of colors needed and remove the axis-agreement requirement in the fully synchronous model. In particular, we present an algorithm requiring 7 colors when scaling the target pattern is allowed and an 8-color algorithm if scaling is not allowed. Our algorithms run in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>O</mi><mo>(</mo><mi>q</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> rounds with probability at least <span><math><mn>1</mn><mo>−</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>q</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102161"},"PeriodicalIF":0.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212400083X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set of n1 unit disk robots in the Euclidean plane, we consider the Pattern Formation problem, i.e., the robots must reposition themselves to form a given target pattern. This problem arises under obstructed visibility, where a robot cannot see another robot if there is a third robot on the straight line segment between the two robots. Recently, this problem was solved in the asynchonous model for fat robots that agree on at least one axis in the robots with lights model where each robot is equipped with an externally visible persistent light that can assume colors from a fixed set of colors [1]. In this work, we reduce the number of colors needed and remove the axis-agreement requirement in the fully synchronous model. In particular, we present an algorithm requiring 7 colors when scaling the target pattern is allowed and an 8-color algorithm if scaling is not allowed. Our algorithms run in O(n)+O(qlogn) rounds with probability at least 1nq.
有光的胖机器人的模式形成
给定欧几里得平面上的一组n≥1个单元的圆盘机器人,我们考虑模式形成问题,即机器人必须重新定位自己以形成给定的目标模式。这个问题出现在能见度受阻的情况下,如果在两个机器人之间的直线段上有第三个机器人,机器人就看不到另一个机器人。最近,这个问题在胖机器人的异步模型中得到了解决,在机器人带灯模型中,每个机器人都配备了一个外部可见的持久光,可以从一组固定的颜色中选择颜色[1]。在这项工作中,我们减少了所需的颜色数量,并消除了完全同步模型中的轴一致要求。特别是,我们提出了一种算法,当允许缩放目标图案时需要7种颜色,如果不允许缩放则需要8种颜色。我们的算法运行在O(n)+O(qlog (n))轮中,概率至少为1−n−q。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信