Fiber-reinforced polymers effect on the degree of bending in offshore cross-shaped tubular connections under out-of-plane bending

IF 4 2区 工程技术 Q1 ENGINEERING, CIVIL
Pooya Rezadoost , Behrouz Asgarian , Hossein Nassiraei
{"title":"Fiber-reinforced polymers effect on the degree of bending in offshore cross-shaped tubular connections under out-of-plane bending","authors":"Pooya Rezadoost ,&nbsp;Behrouz Asgarian ,&nbsp;Hossein Nassiraei","doi":"10.1016/j.marstruc.2024.103776","DOIUrl":null,"url":null,"abstract":"<div><div>The degree of bending (DoB), representing the ratio of bending stress to total stress within the chord wall thickness, is crucial for predicting the fatigue life of tubular connections in offshore structures. This study investigates the influence of fiber-reinforced polymer (FRP) on DoB, hot spot stress, and stress distribution within the chord wall of cross-type tubular connections. Following the validation of a finite element model (FEM) against existing experimental and theoretical data, 166 FEMs were developed and analyzed under out-of-plane bending conditions to examine the effects of connection geometry ratios and FRP parameters (type, layer count, and layout). The findings indicate that FRP sheets significantly enhance connection fatigue performance, increasing DoB by 34.66 %. Furthermore, the application of FRP results in a 51.28 % reduction in bending stress, a 93.21 % reduction in membrane stress, and a decrease in hot spot stress of 54.58 % and 40.54 % on the outer and inner surfaces of the chord, respectively, compared to un-retrofitted connections. A novel parametric formula for estimating DoB in FRP-retrofitted connections under out-of-plane bending is introduced, addressing a significant gap in existing research. This formula provides a valuable tool for the design and analysis of retrofitted tubular connections in offshore structures.</div></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"101 ","pages":"Article 103776"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924002041","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The degree of bending (DoB), representing the ratio of bending stress to total stress within the chord wall thickness, is crucial for predicting the fatigue life of tubular connections in offshore structures. This study investigates the influence of fiber-reinforced polymer (FRP) on DoB, hot spot stress, and stress distribution within the chord wall of cross-type tubular connections. Following the validation of a finite element model (FEM) against existing experimental and theoretical data, 166 FEMs were developed and analyzed under out-of-plane bending conditions to examine the effects of connection geometry ratios and FRP parameters (type, layer count, and layout). The findings indicate that FRP sheets significantly enhance connection fatigue performance, increasing DoB by 34.66 %. Furthermore, the application of FRP results in a 51.28 % reduction in bending stress, a 93.21 % reduction in membrane stress, and a decrease in hot spot stress of 54.58 % and 40.54 % on the outer and inner surfaces of the chord, respectively, compared to un-retrofitted connections. A novel parametric formula for estimating DoB in FRP-retrofitted connections under out-of-plane bending is introduced, addressing a significant gap in existing research. This formula provides a valuable tool for the design and analysis of retrofitted tubular connections in offshore structures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Structures
Marine Structures 工程技术-工程:海洋
CiteScore
8.70
自引率
7.70%
发文量
157
审稿时长
6.4 months
期刊介绍: This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信