{"title":"A geometric condition for uniqueness of Fréchet means of persistence diagrams","authors":"Yueqi Cao, Anthea Monod","doi":"10.1016/j.comgeo.2024.102162","DOIUrl":null,"url":null,"abstract":"<div><div>The Fréchet mean is an important statistical summary and measure of centrality of data; it has been defined and studied for persistent homology captured by persistence diagrams. However, the complicated geometry of the space of persistence diagrams implies that the Fréchet mean for a given set of persistence diagrams is not necessarily unique, which prohibits theoretical guarantees for empirical means with respect to population means. In this paper, we derive a variance expression for a set of persistence diagrams exhibiting a multi-matching between the persistence points known as a grouping. Moreover, we propose a condition for groupings, which we refer to as flatness; we prove that sets of persistence diagrams that exhibit flat groupings give rise to unique Fréchet means. We derive a finite sample convergence result for general groupings, which results in convergence for Fréchet means if the groupings are flat. We then interpret flat groupings in a recently-proposed general framework of Fréchet means in Alexandrov geometry. Finally, we show that for manifold-valued data, the persistence diagrams can be truncated to construct flat groupings.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"128 ","pages":"Article 102162"},"PeriodicalIF":0.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000841","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Fréchet mean is an important statistical summary and measure of centrality of data; it has been defined and studied for persistent homology captured by persistence diagrams. However, the complicated geometry of the space of persistence diagrams implies that the Fréchet mean for a given set of persistence diagrams is not necessarily unique, which prohibits theoretical guarantees for empirical means with respect to population means. In this paper, we derive a variance expression for a set of persistence diagrams exhibiting a multi-matching between the persistence points known as a grouping. Moreover, we propose a condition for groupings, which we refer to as flatness; we prove that sets of persistence diagrams that exhibit flat groupings give rise to unique Fréchet means. We derive a finite sample convergence result for general groupings, which results in convergence for Fréchet means if the groupings are flat. We then interpret flat groupings in a recently-proposed general framework of Fréchet means in Alexandrov geometry. Finally, we show that for manifold-valued data, the persistence diagrams can be truncated to construct flat groupings.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.