Exploring Mg-Sn alloys as electrocatalysts for CO2 electroreduction

IF 4.7 2区 化学 Q2 CHEMISTRY, PHYSICAL
Neus Sunyer-Pons , Vlastimil Mazanek , Zdeněk Sofer , Bahareh Khezri , Katherine Villa , Jose Ramon Galan-Mascaros
{"title":"Exploring Mg-Sn alloys as electrocatalysts for CO2 electroreduction","authors":"Neus Sunyer-Pons ,&nbsp;Vlastimil Mazanek ,&nbsp;Zdeněk Sofer ,&nbsp;Bahareh Khezri ,&nbsp;Katherine Villa ,&nbsp;Jose Ramon Galan-Mascaros","doi":"10.1016/j.apcata.2024.120050","DOIUrl":null,"url":null,"abstract":"<div><div>Tin is one of the most selective electrocatalysts for CO<sub>2</sub> reduction (CO2RR), mostly thanks to its poor activity towards the hydrogen evolution reaction (HER). Still, Sn electrodes are limited by their very high overpotential. We decided to investigate the electrochemical CO2RR catalytic activity of tin-magnesium alloys that can be easily obtained by thermal annealing from the elemental metallic powders. We found that the alloys exhibit a slightly improved activity and selectivity towards CO2RR with formate as dominant product according to electrochemical and chemical analysis. Post-mortem characterization confirmed that this effect is not due to the alloys performance, but to Sn re-structuration. Most of the Mg is leached from the alloy into the electrolyte during CO2RR, leaving a highly porous Sn structure. These changes in morphology and surface area as triggered by Mg leaching, appear to be at the origin of the enhanced electrocatalytic performance.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"690 ","pages":"Article 120050"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24004952","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tin is one of the most selective electrocatalysts for CO2 reduction (CO2RR), mostly thanks to its poor activity towards the hydrogen evolution reaction (HER). Still, Sn electrodes are limited by their very high overpotential. We decided to investigate the electrochemical CO2RR catalytic activity of tin-magnesium alloys that can be easily obtained by thermal annealing from the elemental metallic powders. We found that the alloys exhibit a slightly improved activity and selectivity towards CO2RR with formate as dominant product according to electrochemical and chemical analysis. Post-mortem characterization confirmed that this effect is not due to the alloys performance, but to Sn re-structuration. Most of the Mg is leached from the alloy into the electrolyte during CO2RR, leaving a highly porous Sn structure. These changes in morphology and surface area as triggered by Mg leaching, appear to be at the origin of the enhanced electrocatalytic performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Catalysis A: General
Applied Catalysis A: General 化学-环境科学
CiteScore
9.00
自引率
5.50%
发文量
415
审稿时长
24 days
期刊介绍: Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications. Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信