{"title":"Fine-tuning phenoxy silyl scaffolds for the development of glutathione-responsive prodrugs and antibody–drug conjugates","authors":"Ding Wei , Huihui Wang , Shangwei Huangfu , Cheng Qi , Yuecheng Jiang , Xianqiang Yu , Biao Jiang , Hongli Chen","doi":"10.1016/j.bmc.2025.118088","DOIUrl":null,"url":null,"abstract":"<div><div>Silyl ether is particularly attractive for application in drug development for its easy preparation, non-toxicity and remarkable biocompatibility. Earlier studies relied on the use of intracellular acidic conditions to induce the cleavage of alkoxy silyl ethers. However, acidic conditions are not suitable to trigger the release of phenoxy silyl ethers, since they are more stable under acidic conditions compared with neutral conditions. We explored the vulnerability of the phenoxy silyl ether towards biological nucleophilic reagents and found that glutathione (GSH) could effectively and selectively induce the cleavage of phenoxy silyl ether. We also demonstrated that the rate of cleavage was controllable by adjusting the substituents on the phenyl ring. Phenoxy silyl ether-based prodrugs and antibody–drug conjugates (ADCs) were designed and synthesized, which could be effectively activated in cells with high GSH levels and there was an obvious therapeutic window between cells with different GSH levels.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"120 ","pages":"Article 118088"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096808962500029X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silyl ether is particularly attractive for application in drug development for its easy preparation, non-toxicity and remarkable biocompatibility. Earlier studies relied on the use of intracellular acidic conditions to induce the cleavage of alkoxy silyl ethers. However, acidic conditions are not suitable to trigger the release of phenoxy silyl ethers, since they are more stable under acidic conditions compared with neutral conditions. We explored the vulnerability of the phenoxy silyl ether towards biological nucleophilic reagents and found that glutathione (GSH) could effectively and selectively induce the cleavage of phenoxy silyl ether. We also demonstrated that the rate of cleavage was controllable by adjusting the substituents on the phenyl ring. Phenoxy silyl ether-based prodrugs and antibody–drug conjugates (ADCs) were designed and synthesized, which could be effectively activated in cells with high GSH levels and there was an obvious therapeutic window between cells with different GSH levels.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.