Stimuli-responsive supramolecular hydrogels for paclitaxel delivery: Progress and prospects

Mohammad Qutub , Amol Tatode , Jayshree Taksande , Tanvi Premchandani , Milind Umekar , Ujban Md Hussain , Dinesh Biyani , Dadaso Mane
{"title":"Stimuli-responsive supramolecular hydrogels for paclitaxel delivery: Progress and prospects","authors":"Mohammad Qutub ,&nbsp;Amol Tatode ,&nbsp;Jayshree Taksande ,&nbsp;Tanvi Premchandani ,&nbsp;Milind Umekar ,&nbsp;Ujban Md Hussain ,&nbsp;Dinesh Biyani ,&nbsp;Dadaso Mane","doi":"10.1016/j.amolm.2024.100062","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer remains a leading cause of death worldwide, while chemotherapy playing a pivotal role in its management. However, traditional chemotherapy often encounters challenges such as non-specific drug delivery, systemic toxicity, and rapid clearance. Thermosensitive supramolecular hydrogels have emerged as an innovative platform for localized and sustained drug delivery, particularly for paclitaxel (PTX), a potent chemotherapeutic agent. These hydrogels exhibit unique sol-gel phase transitions at physiological temperatures, enabling minimally invasive administration and prolonged retention at tumor sites. Advances in hydrogel formulations, including dual stimuli-responsive systems and nanocrystal-loaded designs, enhance drug stability, controlled release, and therapeutic efficacy. Additionally, these hydrogels can incorporate multimodal therapeutic agents, such as immunomodulators and photosensitizers, achieving synergistic anticancer effects. Despite significant progress, challenges remain in optimizing tumor penetration, scaling production, and addressing tumor heterogeneity. Ongoing research into hydrogel composition, biocompatibility, and targeted delivery mechanisms aims to overcome these limitations, paving the way for their clinical translation. This review highlights recent advancements and future prospects of thermosensitive hydrogels for PTX delivery, emphasizing their potential to revolutionize cancer treatment by reducing systemic toxicity and improving localized therapeutic outcomes.</div></div>","PeriodicalId":72320,"journal":{"name":"Aspects of molecular medicine","volume":"5 ","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aspects of molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949688824000297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer remains a leading cause of death worldwide, while chemotherapy playing a pivotal role in its management. However, traditional chemotherapy often encounters challenges such as non-specific drug delivery, systemic toxicity, and rapid clearance. Thermosensitive supramolecular hydrogels have emerged as an innovative platform for localized and sustained drug delivery, particularly for paclitaxel (PTX), a potent chemotherapeutic agent. These hydrogels exhibit unique sol-gel phase transitions at physiological temperatures, enabling minimally invasive administration and prolonged retention at tumor sites. Advances in hydrogel formulations, including dual stimuli-responsive systems and nanocrystal-loaded designs, enhance drug stability, controlled release, and therapeutic efficacy. Additionally, these hydrogels can incorporate multimodal therapeutic agents, such as immunomodulators and photosensitizers, achieving synergistic anticancer effects. Despite significant progress, challenges remain in optimizing tumor penetration, scaling production, and addressing tumor heterogeneity. Ongoing research into hydrogel composition, biocompatibility, and targeted delivery mechanisms aims to overcome these limitations, paving the way for their clinical translation. This review highlights recent advancements and future prospects of thermosensitive hydrogels for PTX delivery, emphasizing their potential to revolutionize cancer treatment by reducing systemic toxicity and improving localized therapeutic outcomes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Aspects of molecular medicine
Aspects of molecular medicine Molecular Biology, Molecular Medicine
自引率
0.00%
发文量
0
审稿时长
38 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信