Empirical insights into the interaction effects of groups at high risk of depression on online social platforms with NLP-based sentiment analysis

Yi Xiao , Yutong Yang , Haozhe Xu , Shijuan Li
{"title":"Empirical insights into the interaction effects of groups at high risk of depression on online social platforms with NLP-based sentiment analysis","authors":"Yi Xiao ,&nbsp;Yutong Yang ,&nbsp;Haozhe Xu ,&nbsp;Shijuan Li","doi":"10.1016/j.dim.2024.100080","DOIUrl":null,"url":null,"abstract":"<div><div>With the proliferation of digital technology and the increasing prevalence of social media, some users at high risk of depression have opted to seek solace, acceptance, and assistance in online communities. However, the extant research is deficient in terms of the segmentation of groups, particularly subcultural groups. By analyzing the “Super Hashtags” and “Tree Hole” groups on Sina Weibo from January to March 2023 using a crawler and the ERNIE 3.0-Base model for sentiment analysis, the study uncovers distinct sentiment profiles and interaction patterns, revealing significant correlations between interaction metrics and sentiment levels. The findings indicate that while there are no significant differences in sentiment levels between the two communities, the “Tree Hole” community exhibits greater sentiment variability. Moreover, the study identifies that interaction behaviors are closely linked to sentiment states, emphasizing the importance of understanding the complex dynamics between online interactions and mental well-being. These insights contribute to the development of more effective support mechanisms within online platforms for individuals at risk of depression.</div></div>","PeriodicalId":72769,"journal":{"name":"Data and information management","volume":"8 4","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and information management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543925124000160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the proliferation of digital technology and the increasing prevalence of social media, some users at high risk of depression have opted to seek solace, acceptance, and assistance in online communities. However, the extant research is deficient in terms of the segmentation of groups, particularly subcultural groups. By analyzing the “Super Hashtags” and “Tree Hole” groups on Sina Weibo from January to March 2023 using a crawler and the ERNIE 3.0-Base model for sentiment analysis, the study uncovers distinct sentiment profiles and interaction patterns, revealing significant correlations between interaction metrics and sentiment levels. The findings indicate that while there are no significant differences in sentiment levels between the two communities, the “Tree Hole” community exhibits greater sentiment variability. Moreover, the study identifies that interaction behaviors are closely linked to sentiment states, emphasizing the importance of understanding the complex dynamics between online interactions and mental well-being. These insights contribute to the development of more effective support mechanisms within online platforms for individuals at risk of depression.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data and information management
Data and information management Management Information Systems, Library and Information Sciences
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信