d-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu
{"title":"d-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study","authors":"Fei Xie ,&nbsp;Chengcheng Yuan ,&nbsp;Haiyan Tan ,&nbsp;Alireza Z. Moshfegh ,&nbsp;Bicheng Zhu ,&nbsp;Jiaguo Yu","doi":"10.3866/PKU.WHXB202407013","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic framework (COF) materials are promising photocatalysts because of their fantastic structural and physicochemical features. To enhance photocatalytic performance, numerous metal single atoms (MSA) are loaded on COF to improve molecule adsorption. However, the inherent mechanisms and dominant factors of the heightened adsorption property are not deeply unveiled. Herein, four MSA-COF systems were constructed by severally introducing Fe, Co, Ni, and Cu single atoms in monolayer TpBpy-COF. The effect of various metal atoms modification on the electronic property and O<sub>2</sub> adsorption of COF was investigated using density functional theory calculations. The results show that the metal atoms are bonded to the pyridinic N atoms, forming stable MSA-COF configurations. The anchoring of metal atoms reduces the band gap and raises the Fermi level of COF. Moreover, as the atomic number of the metals increases, the <em>d</em> orbitals of the metal atoms gradually move to lower energy levels, manifesting a negative shift of the <em>d</em>-band centers. After metal atoms loading, the weak physical adsorption of O<sub>2</sub> on pristine COF is converted to robust chemisorption with the formation of M―O<sub>ads</sub> bonds and intense electron transfer. Intriguingly, the adsorption energy presents a strong correlation with the <em>d</em>-band centers of the metal atoms. This finding is comprehended from the perspective of electron occupancy in antibonding orbitals in the adsorption systems. This work provides a feasible approach for modifying molecule adsorption on MSA-COF by regulating the <em>d</em>-band centers of metal atoms.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (95KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 11","pages":"Article 2407013"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001747","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic framework (COF) materials are promising photocatalysts because of their fantastic structural and physicochemical features. To enhance photocatalytic performance, numerous metal single atoms (MSA) are loaded on COF to improve molecule adsorption. However, the inherent mechanisms and dominant factors of the heightened adsorption property are not deeply unveiled. Herein, four MSA-COF systems were constructed by severally introducing Fe, Co, Ni, and Cu single atoms in monolayer TpBpy-COF. The effect of various metal atoms modification on the electronic property and O2 adsorption of COF was investigated using density functional theory calculations. The results show that the metal atoms are bonded to the pyridinic N atoms, forming stable MSA-COF configurations. The anchoring of metal atoms reduces the band gap and raises the Fermi level of COF. Moreover, as the atomic number of the metals increases, the d orbitals of the metal atoms gradually move to lower energy levels, manifesting a negative shift of the d-band centers. After metal atoms loading, the weak physical adsorption of O2 on pristine COF is converted to robust chemisorption with the formation of M―Oads bonds and intense electron transfer. Intriguingly, the adsorption energy presents a strong correlation with the d-band centers of the metal atoms. This finding is comprehended from the perspective of electron occupancy in antibonding orbitals in the adsorption systems. This work provides a feasible approach for modifying molecule adsorption on MSA-COF by regulating the d-band centers of metal atoms.
  1. Download: Download high-res image (95KB)
  2. Download: Download full-size image
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信