Application of edge computing technology in smart grid data security

Q4 Engineering
Zhuo Cheng, Jiangxin Li, Jianjun Zhang, Chen Wang, Hui Wang, Juyin Wu
{"title":"Application of edge computing technology in smart grid data security","authors":"Zhuo Cheng,&nbsp;Jiangxin Li,&nbsp;Jianjun Zhang,&nbsp;Chen Wang,&nbsp;Hui Wang,&nbsp;Juyin Wu","doi":"10.1016/j.measen.2024.101412","DOIUrl":null,"url":null,"abstract":"<div><div>In order to solve the problem that the two-way flow of power and information between user nodes and service nodes in the smart grid poses a huge threat to the privacy and security of user data, and at the same time, the limitation of the power bureau's computing resources also brings users response delay, service quality degradation and other problems, the author proposes the application of edge computing technology in smart grid data security. Combining with edge computing technology, the author proposes a proxy blind signcryption scheme based on certificateless without bilinear mapping. By blinding the power and information, the signcrypter can not know the specific power consumption information of the user, so as to ensure the data privacy and security of the user. Implement forward security using proxy key update mechanism and perform batch verification of user signature ciphertext. The experimental results indicate that: The total running time required for executing proxy authorization and verification, proxy key generation, signature and decryption algorithms in this scheme is 5.617 ms, with a ciphertext length of 80 Bytes. Compared with other existing literature, the maximum reduction is 85.6 % and 86 %, respectively.</div></div><div><h3>Conclusion</h3><div>This scheme is more suitable for protecting data security and privacy in the data transmission process of smart grids due to its lower running time and communication cost.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"37 ","pages":"Article 101412"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266591742400388X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the problem that the two-way flow of power and information between user nodes and service nodes in the smart grid poses a huge threat to the privacy and security of user data, and at the same time, the limitation of the power bureau's computing resources also brings users response delay, service quality degradation and other problems, the author proposes the application of edge computing technology in smart grid data security. Combining with edge computing technology, the author proposes a proxy blind signcryption scheme based on certificateless without bilinear mapping. By blinding the power and information, the signcrypter can not know the specific power consumption information of the user, so as to ensure the data privacy and security of the user. Implement forward security using proxy key update mechanism and perform batch verification of user signature ciphertext. The experimental results indicate that: The total running time required for executing proxy authorization and verification, proxy key generation, signature and decryption algorithms in this scheme is 5.617 ms, with a ciphertext length of 80 Bytes. Compared with other existing literature, the maximum reduction is 85.6 % and 86 %, respectively.

Conclusion

This scheme is more suitable for protecting data security and privacy in the data transmission process of smart grids due to its lower running time and communication cost.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信