A comparative analysis of the health monitoring process using deep learning methods for brain tumour

Q4 Engineering
N. Manjunathan, N. Gomathi
{"title":"A comparative analysis of the health monitoring process using deep learning methods for brain tumour","authors":"N. Manjunathan,&nbsp;N. Gomathi","doi":"10.1016/j.measen.2025.101807","DOIUrl":null,"url":null,"abstract":"<div><div>The use of Internet of Things (IoT) devices has been growing rapidly recently. As technology improves, products for older people are developed in the health industry. Applications for virtual and remote interactions with patients are somewhat too simple to use. If IoT technology is used well, it may be possible to treat physically erratic individuals without having to see a doctor often. As a result of this research, a prototype of an Internet of Things–based remote health monitoring system for senior patients has been developed. The suggested technique enables the care to better manage and keep an eye on the well-being of older patients. The system will design and implement efficient contact with the patient's families. This model has a number of sensors, including sensors for arthritis, body temperature, skin response, and pulse. Each sensor is paired with a system of proposals for analysis and validation. The data feasibility of the data obtained from the IoT sensors of the proposed system efficacy is being explored. The information obtained from the sensors and the extracted data is sent to cloud storage via distributed storage. In the performance studies, the efficacy of the proposed system is evaluated based on the data retrieved and used against certain health metrics like heartbeat and temperature sensors. IoT combined with wellness wearables may eliminate the need to visit a doctor for urgent health conditions. To ensure data accuracy &amp; system scaling, Internet of Things devices are employed in the proposed system, &amp; the power consumption and battery life are analysed.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"37 ","pages":"Article 101807"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917425000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The use of Internet of Things (IoT) devices has been growing rapidly recently. As technology improves, products for older people are developed in the health industry. Applications for virtual and remote interactions with patients are somewhat too simple to use. If IoT technology is used well, it may be possible to treat physically erratic individuals without having to see a doctor often. As a result of this research, a prototype of an Internet of Things–based remote health monitoring system for senior patients has been developed. The suggested technique enables the care to better manage and keep an eye on the well-being of older patients. The system will design and implement efficient contact with the patient's families. This model has a number of sensors, including sensors for arthritis, body temperature, skin response, and pulse. Each sensor is paired with a system of proposals for analysis and validation. The data feasibility of the data obtained from the IoT sensors of the proposed system efficacy is being explored. The information obtained from the sensors and the extracted data is sent to cloud storage via distributed storage. In the performance studies, the efficacy of the proposed system is evaluated based on the data retrieved and used against certain health metrics like heartbeat and temperature sensors. IoT combined with wellness wearables may eliminate the need to visit a doctor for urgent health conditions. To ensure data accuracy & system scaling, Internet of Things devices are employed in the proposed system, & the power consumption and battery life are analysed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信