Emerging Irreversible and Reversible Ion Migrations in Perovskites

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao
{"title":"Emerging Irreversible and Reversible Ion Migrations in Perovskites","authors":"Rui Li ,&nbsp;Huan Liu ,&nbsp;Yinan Jiao ,&nbsp;Shengjian Qin ,&nbsp;Jie Meng ,&nbsp;Jiayu Song ,&nbsp;Rongrong Yan ,&nbsp;Hang Su ,&nbsp;Hengbin Chen ,&nbsp;Zixuan Shang ,&nbsp;Jinjin Zhao","doi":"10.3866/PKU.WHXB202311011","DOIUrl":null,"url":null,"abstract":"<div><div>Metal halide perovskite (MHP) materials show great prospects in applications such as solar cells, luminescent displays, and biomedicines, owing to their outstanding visible light absorption, photoelectric conversion, adjustable energy level structure, and low energy consumption. Their exceptional properties, such as high visible light absorption, efficient photoelectric conversion, adjustable energy level structure, and low energy consumption, have attracted significant attention. However, the presence of ion migration in MHPs has been identified as a critical challenge, leading to reduced energy conversion efficiency and device instability. Overcoming this obstacle is crucial for the commercialization of perovskite-based technologies. In recent years, extensive research has been conducted to understand the conditions and mechanisms of ion migration in perovskite materials, as well as develop strategies to mitigate its adverse effects. This paper adopts a dialectical perspective on ion migration, with a specific focus on energy barriers. A comprehensive review is provided, covering the fundamental concepts and formation mechanisms of both irreversible unidirectional and reversible bidirectional ion migrations. This paper begins by presenting a detailed summary of the degradation processes caused by irreversible unidirectional ion migrations phenomena induced by external fields, including illumination, stress/strain, thermal and electrical fields. Understanding the underlying mechanisms of such degradation is essential to address the stability concerns associated with perovskite devices. Moreover, the overview of bidirectional reversible ion migration phenomena in perovskite is presented. The cyclic formation and restoration of Schottky barriers at the interface can significantly influence the photoelectrical properties and impact the overall performance of perovskite devices. Various strategies for regulating ion migrations under external fields are discussed, aiming to enhance device stability and performance. By understanding the energy landscape and migration pathways, researchers can develop effective strategies to control and optimize ion migrations, ultimately improving the photoelectric conversion performance of perovskite devices. This paper provides comprehensive analysis of ion migration in perovskite materials, addressing fundamental concepts, ion migration mechanisms, and strategies for regulating ion migrations. By providing a clear understanding of the challenges associated with ion migration, this work contributes to the advancement of perovskite-based technologies and facilitates their commercialization. Ultimately, the optimization of ion migration control will lead to improved performance and stability of perovskite devices, enabling their widespread adoption in various applications.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (95KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 11","pages":"Article 2311011"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001607","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal halide perovskite (MHP) materials show great prospects in applications such as solar cells, luminescent displays, and biomedicines, owing to their outstanding visible light absorption, photoelectric conversion, adjustable energy level structure, and low energy consumption. Their exceptional properties, such as high visible light absorption, efficient photoelectric conversion, adjustable energy level structure, and low energy consumption, have attracted significant attention. However, the presence of ion migration in MHPs has been identified as a critical challenge, leading to reduced energy conversion efficiency and device instability. Overcoming this obstacle is crucial for the commercialization of perovskite-based technologies. In recent years, extensive research has been conducted to understand the conditions and mechanisms of ion migration in perovskite materials, as well as develop strategies to mitigate its adverse effects. This paper adopts a dialectical perspective on ion migration, with a specific focus on energy barriers. A comprehensive review is provided, covering the fundamental concepts and formation mechanisms of both irreversible unidirectional and reversible bidirectional ion migrations. This paper begins by presenting a detailed summary of the degradation processes caused by irreversible unidirectional ion migrations phenomena induced by external fields, including illumination, stress/strain, thermal and electrical fields. Understanding the underlying mechanisms of such degradation is essential to address the stability concerns associated with perovskite devices. Moreover, the overview of bidirectional reversible ion migration phenomena in perovskite is presented. The cyclic formation and restoration of Schottky barriers at the interface can significantly influence the photoelectrical properties and impact the overall performance of perovskite devices. Various strategies for regulating ion migrations under external fields are discussed, aiming to enhance device stability and performance. By understanding the energy landscape and migration pathways, researchers can develop effective strategies to control and optimize ion migrations, ultimately improving the photoelectric conversion performance of perovskite devices. This paper provides comprehensive analysis of ion migration in perovskite materials, addressing fundamental concepts, ion migration mechanisms, and strategies for regulating ion migrations. By providing a clear understanding of the challenges associated with ion migration, this work contributes to the advancement of perovskite-based technologies and facilitates their commercialization. Ultimately, the optimization of ion migration control will lead to improved performance and stability of perovskite devices, enabling their widespread adoption in various applications.
  1. Download: Download high-res image (95KB)
  2. Download: Download full-size image
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信