Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution

IF 10.8 2区 化学 Q1 CHEMISTRY, PHYSICAL
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao
{"title":"Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution","authors":"Jingzhao Cheng ,&nbsp;Shiyu Gao ,&nbsp;Bei Cheng ,&nbsp;Kai Yang ,&nbsp;Wang Wang ,&nbsp;Shaowen Cao","doi":"10.3866/PKU.WHXB202406026","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic hydrogen generation through water splitting driven by solar energy is regarded as a highly promising strategy to tackle the challenges of the energy crisis and environmental contamination. Tuning the electronic properties and band structures of photocatalysts is critical to improving the efficiency of charge separation and the activity of hydrogen production. Herein, donor-acceptor modified polymeric carbon nitride (CN)-based copolymers are synthesized <em>via</em> the introduction of 4-amino-1H-imidazole-5-carbonitrile (AICN) into the molecular skeleton of CN. The incorporation of electron donor AICN units can broaden the <em>π</em>-conjugated system and promote the spatial charge separation in the catalysts, thus resulting in enhanced light utilization and improved intramolecular charge carrier transfer rate. As a consequence, the AICN modified CN samples exhibit an increased photocatalytic hydrogen evolution rate, and the optimal photocatalytic activity can reach 3204 μmol·h<sup>−1</sup>·g<sup>−1</sup>. This molecular engineering strategy provides an effective avenue to develop high-performance CN-based photocatalysts for hydrogen evolution.</div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (63KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"40 11","pages":"Article 2406026"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681824001772","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic hydrogen generation through water splitting driven by solar energy is regarded as a highly promising strategy to tackle the challenges of the energy crisis and environmental contamination. Tuning the electronic properties and band structures of photocatalysts is critical to improving the efficiency of charge separation and the activity of hydrogen production. Herein, donor-acceptor modified polymeric carbon nitride (CN)-based copolymers are synthesized via the introduction of 4-amino-1H-imidazole-5-carbonitrile (AICN) into the molecular skeleton of CN. The incorporation of electron donor AICN units can broaden the π-conjugated system and promote the spatial charge separation in the catalysts, thus resulting in enhanced light utilization and improved intramolecular charge carrier transfer rate. As a consequence, the AICN modified CN samples exhibit an increased photocatalytic hydrogen evolution rate, and the optimal photocatalytic activity can reach 3204 μmol·h−1·g−1. This molecular engineering strategy provides an effective avenue to develop high-performance CN-based photocatalysts for hydrogen evolution.
  1. Download: Download high-res image (63KB)
  2. Download: Download full-size image
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信